Algorithms \& Models of Computation

CS/ECE 374, Fall 2020

19.5

Maximum Weight Subset of Elements: Cardinality and Beyond

Picking k elements to maximize total weight

(1) Given \boldsymbol{n} items each with non-negative weights/profits and integer $1 \leq \boldsymbol{k} \leq \boldsymbol{n}$.
(2) Goal: pick \boldsymbol{k} elements to maximize total weight of items picked.

	\boldsymbol{e}_{1}	\boldsymbol{e}_{2}	\boldsymbol{e}_{3}	\boldsymbol{e}_{4}	\boldsymbol{e}_{5}	\boldsymbol{e}_{6}
weight	3	2	1	4	3	2

$k=2:$
$k=3$:
$k=4:$

Greedy Template

```
N}\mathrm{ is the set of all elements }\boldsymbol{X}\leftarrow
(* X will store all the elements that will be picked *)
while}|\boldsymbol{X}|<\boldsymbol{k}\mathrm{ and }\boldsymbol{N}\mathrm{ is not empty do
    choose }\mp@subsup{\boldsymbol{e}}{\boldsymbol{j}}{}\in\boldsymbol{N}\mathrm{ of maximum weight
```



```
    remove 埗 from N
return the set }
```

Remark: One can rephrase algorithm simply as sorting elements in decreasing weight order and picking the top k elements but the above template generalizes to other settings a bit more easily.

Greedy Template

```
N is the set of all elements }\boldsymbol{X}\leftarrow
(* X will store all the elements that will be picked *)
while}|\boldsymbol{X}|<\boldsymbol{k}\mathrm{ and }\boldsymbol{N}\mathrm{ is not empty do
    choose }\mp@subsup{\boldsymbol{e}}{\boldsymbol{j}}{}\in\boldsymbol{N}\mathrm{ of maximum weight
```



```
        remove 埗 from N
return the set }
```

Remark: One can rephrase algorithm simply as sorting elements in decreasing weight order and picking the top k elements but the above template generalizes to other settings a bit more easily.

Theorem 19.1.

Greedy is optimal for picking \boldsymbol{k} elements of maximum weight.

A more interesting problem

(1) Given n items $N=\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$. Each item e_{i} has a non-negative weight w_{i}.
(2) Items partitioned into \boldsymbol{h} sets $N_{1}, N_{2}, \ldots, N_{\boldsymbol{h}}$. Think of each item having one of \boldsymbol{h} colors.
(Given integers $\boldsymbol{k}_{1}, \boldsymbol{k}_{2}, \ldots, \boldsymbol{k}_{\boldsymbol{h}}$ and another integer \boldsymbol{k}
(0) Goal: pick k elements such that no more than k_{i} from N_{i} to maximize total weight of items picked.

	e_{1}	e_{2}	e_{3}	e_{4}	e_{5}	e_{6}	e_{7}
weight	9	5	4	7	5	2	1

$N_{1}=\left\{e_{1}, e_{2}, e_{3}\right\}, N_{2}=\left\{e_{4}, e_{5}\right\}, N_{3}=\left\{e_{6}, e_{7}\right\}$
$\boldsymbol{k}=4, \boldsymbol{k}_{1}=2, \boldsymbol{k}_{2}=1, \boldsymbol{k}_{3}=2$

Greedy Template

```
N is the set of all elements }X\leftarrow
(* X will store all the elements that will be picked *)
while N}\mathrm{ is not empty do
    N'={\mp@subsup{e}{i}{\prime}\inN|X\cup{\mp@subsup{\boldsymbol{e}}{\boldsymbol{i}}{}}\mathrm{ is feasible }}
    if N'=\emptyset then break
    choose }\mp@subsup{e}{j}{}\in\mp@subsup{N}{}{\prime}\mathrm{ of maximum weight
    add }\mp@subsup{\boldsymbol{e}}{\boldsymbol{j}}{}\mathrm{ to }\boldsymbol{X
    remove 的 from N
return the set X
```


Greedy Template

```
N}\mathrm{ is the set of all elements }\boldsymbol{X}\leftarrow
(* X will store all the elements that will be picked *)
while N
    N'}={\mp@subsup{\boldsymbol{e}}{\boldsymbol{i}}{\prime}\inN|\boldsymbol{N}\cup\boldsymbol{X}\cup{\mp@subsup{e}{i}{}}\mathrm{ is feasible }
    if }\mp@subsup{N}{}{\prime}=\emptyset\mathrm{ then break
    choose }\mp@subsup{\boldsymbol{e}}{\boldsymbol{j}}{}\in\mp@subsup{\boldsymbol{N}}{}{\prime}\mathrm{ of maximum weight
```



```
return the set X
```


Theorem 19.2.

Greedy is optimal for the problem on previous slide.
Proof: exercise after class.

Special case of general phenomenon of Greedy working for maximum weight independent set in a matroid. Beyond scope of course.

THE END

(for now)

