Algorithms & Models of Computation CS/ECE 374, Fall 2020

19.5

Maximum Weight Subset of Elements: Cardinality and Beyond

Picking k elements to maximize total weight

- Given *n* items each with non-negative weights/profits and integer $1 \le k \le n$.
- **②** Goal: pick k elements to maximize total weight of items picked.

	\boldsymbol{e}_1	e ₂	e ₃	e ₄	e ₅	e ₆
weight	3	2	1	4	3	2

k = 2:k = 3:k = 4:

 $\begin{array}{l} N \text{ is the set of all elements } X \leftarrow \emptyset \\ (* \ X \text{ will store all the elements that will be picked *)} \\ \text{while } |X| < k \text{ and } N \text{ is not empty } \mathbf{do} \\ \text{ choose } e_j \in N \text{ of maximum weight} \\ \text{ add } e_j \text{ to } X \\ \text{ remove } e_j \text{ from } N \\ \text{return the set } X \end{array}$

Remark: One can rephrase algorithm simply as sorting elements in decreasing weight order and picking the top k elements but the above template generalizes to other settings a bit more easily.

Theorem 19.1.

Greedy is optimal for picking k elements of maximum weight.

 $\begin{array}{l} N \text{ is the set of all elements } X \leftarrow \emptyset \\ (* \ X \text{ will store all the elements that will be picked *)} \\ \text{while } |X| < k \text{ and } N \text{ is not empty } \mathbf{do} \\ \text{ choose } e_j \in N \text{ of maximum weight} \\ \text{ add } e_j \text{ to } X \\ \text{ remove } e_j \text{ from } N \\ \text{return the set } X \end{array}$

Remark: One can rephrase algorithm simply as sorting elements in decreasing weight order and picking the top k elements but the above template generalizes to other settings a bit more easily.

Theorem 19.1.

Greedy is optimal for picking k elements of maximum weight.

A more interesting problem

- Given *n* items $N = \{e_1, e_2, \dots, e_n\}$. Each item e_i has a non-negative weight w_i .
- Items <u>partitioned</u> into h sets N₁, N₂, ..., N_h. Think of each item having one of h colors.
- **3** Given integers k_1, k_2, \ldots, k_h and another integer k
- Goal: pick k elements such that no more than k_i from N_i to maximize total weight of items picked.

	e ₁	e ₂	e ₃	e ₄	e ₅	e ₆	e ₇
weight	9	5	4	7	5	2	1

 $m{N}_1 = \{m{e}_1, m{e}_2, m{e}_3\}, \ m{N}_2 = \{m{e}_4, m{e}_5\}, \ m{N}_3 = \{m{e}_6, m{e}_7\}$ $m{k} = 4, \ m{k}_1 = 2, \ m{k}_2 = 1, \ m{k}_3 = 2$

```
 \begin{array}{l} N \text{ is the set of all elements } X \leftarrow \emptyset \\ (* \ X \text{ will store all the elements that will be picked *)} \\ \text{while } N \text{ is not empty do} \\ N' = \{e_i \in N \mid X \cup \{e_i\} \text{ is feasible}\} \\ \text{ if } N' = \emptyset \text{ then break} \\ \text{ choose } e_j \in N' \text{ of maximum weight} \\ \text{ add } e_j \text{ to } X \\ \text{ remove } e_j \text{ from } N \\ \text{return the set } X \end{array}
```

Theorem 19.2.

Greedy is optimal for the problem on previous slide.

Proof: exercise after class.

Special case of general phenomenon of Greedy working for maximum weight independent set in a matroid. Beyond scope of course.

```
 \begin{array}{l} N \text{ is the set of all elements } X \leftarrow \emptyset \\ (* \ X \text{ will store all the elements that will be picked *)} \\ \text{while } N \text{ is not empty do} \\ N' = \{e_i \in N \mid X \cup \{e_i\} \text{ is feasible}\} \\ \text{ if } N' = \emptyset \text{ then break} \\ \text{ choose } e_j \in N' \text{ of maximum weight} \\ \text{ add } e_j \text{ to } X \\ \text{ remove } e_j \text{ from } N \\ \text{return the set } X \end{array}
```

Theorem 19.2.

Greedy is optimal for the problem on previous slide.

Proof: exercise after class.

Special case of general phenomenon of Greedy working for maximum weight independent set in a matroid. Beyond scope of course.

THE END

(for now)

. . .