Algorithms \& Models of Computation

CS/ECE 374, Fall 2020

19.3.1

Exercise: Scheduling Jobs to Minimize Weighted Average Waiting Time

Exercise: A Weighted Version

- n jobs $J_{1}, J_{2}, \ldots, J_{n}$. $\boldsymbol{J}_{\boldsymbol{i}}$ has non-negative processing time $\boldsymbol{p}_{\boldsymbol{i}}$ and a non-negative weight w_{i}
- One server/machine/person available to process jobs.
- Schedule/order the jobs to minimize total or average waiting time
- Waiting time of $\boldsymbol{J}_{\boldsymbol{j}}$ in schedule $\boldsymbol{\sigma}$: sum of processing times of all jobs scheduled before J_{i}
- Goal: minimize total weighted waiting time.
- Formally, compute a permutation π that minimizes $\sum_{i=1}^{n}\left(\sum_{j=1}^{i-1} p_{\pi(j)}\right) w_{\pi(i)}$.

	J_{1}	J_{2}	J_{3}	J_{4}	J_{5}	J_{6}
time	3	4	1	8	2	6
weight	10	5	2	100	1	1

Exercise: A Weighted Version

Consider two jobs $\boldsymbol{p}_{1}, \boldsymbol{p}_{2}$ of weight \boldsymbol{w}_{1} and \boldsymbol{w}_{2}. We have two possibilities:
Job 1 first Job 2 first

Exercise: A Weighted Version

Consider two jobs $\boldsymbol{p}_{1}, \boldsymbol{p}_{2}$ of weight \boldsymbol{w}_{1} and \boldsymbol{w}_{2}. We have two possibilities:

	Job 1 first	Job 2 first
Pricing	$0 \cdot \boldsymbol{w}_{1}+\boldsymbol{p}_{1} \boldsymbol{w}_{2}$	$0 \boldsymbol{w}_{2}+\boldsymbol{p}_{2} \boldsymbol{w}_{1}$

Exercise: A Weighted Version

Consider two jobs $\boldsymbol{p}_{1}, \boldsymbol{p}_{2}$ of weight \boldsymbol{w}_{1} and \boldsymbol{w}_{2}. We have two possibilities:

	Job 1 first	Job 2 first
Pricing	$0 \cdot \boldsymbol{w}_{1}+\boldsymbol{p}_{1} \boldsymbol{w}_{2}$	$0 \boldsymbol{w}_{2}+\boldsymbol{p}_{2} \boldsymbol{w}_{1}$
Equivalent to	$\boldsymbol{p}_{1} \boldsymbol{w}_{2}$	$\boldsymbol{p}_{2} \boldsymbol{w}_{1}$

Exercise: A Weighted Version

Consider two jobs $\boldsymbol{p}_{1}, \boldsymbol{p}_{2}$ of weight \boldsymbol{w}_{1} and \boldsymbol{w}_{2}. We have two possibilities:

	Job 1 first	Job 2 first
Pricing	$0 \cdot \boldsymbol{w}_{1}+\boldsymbol{p}_{1} \boldsymbol{w}_{2}$	$0 \boldsymbol{w}_{2}+\boldsymbol{p}_{2} \boldsymbol{w}_{1}$
Equivalent to	$\boldsymbol{p}_{1} \boldsymbol{w}_{2}$	$\boldsymbol{p}_{2} \boldsymbol{w}_{1}$

Exercise: A Weighted Version

Consider two jobs $\boldsymbol{p}_{1}, \boldsymbol{p}_{2}$ of weight \boldsymbol{w}_{1} and \boldsymbol{w}_{2}. We have two possibilities:

	Job 1 first	Job 2 first
Pricing	$0 \cdot \boldsymbol{w}_{1}+\boldsymbol{p}_{1} \boldsymbol{w}_{2}$	$0 \boldsymbol{w}_{2}+\boldsymbol{p}_{2} \boldsymbol{w}_{1}$
Equivalent to	$\boldsymbol{p}_{1} \boldsymbol{w}_{2}$	$\boldsymbol{p}_{2} \boldsymbol{w}_{1}$

need to compare $\boldsymbol{p}_{1} \boldsymbol{w}_{2} \stackrel{?}{=} \boldsymbol{p}_{2} \boldsymbol{w}_{1}$

Exercise: A Weighted Version

Consider two jobs $\boldsymbol{p}_{1}, \boldsymbol{p}_{2}$ of weight \boldsymbol{w}_{1} and \boldsymbol{w}_{2}. We have two possibilities:

	Job 1 first	Job 2 first
Pricing	$0 \cdot \boldsymbol{w}_{1}+\boldsymbol{p}_{1} \boldsymbol{w}_{2}$	$0 \boldsymbol{w}_{2}+\boldsymbol{p}_{2} \boldsymbol{w}_{1}$
Equivalent to	$\boldsymbol{p}_{1} \boldsymbol{w}_{2}$	$\boldsymbol{p}_{2} \boldsymbol{w}_{1}$

need to compare $\boldsymbol{p}_{1} \boldsymbol{w}_{2} \stackrel{?}{=} \boldsymbol{p}_{2} \boldsymbol{w}_{1}$

Exercise: A Weighted Version

Consider two jobs $\boldsymbol{p}_{1}, \boldsymbol{p}_{2}$ of weight \boldsymbol{w}_{1} and \boldsymbol{w}_{2}. We have two possibilities:

	Job 1 first	Job 2 first
Pricing	$0 \cdot \boldsymbol{w}_{1}+\boldsymbol{p}_{1} \boldsymbol{w}_{2}$	$0 \boldsymbol{w}_{2}+\boldsymbol{p}_{2} \boldsymbol{w}_{1}$
Equivalent to	$\boldsymbol{p}_{1} \boldsymbol{w}_{2}$	$\boldsymbol{p}_{2} \boldsymbol{w}_{1}$

need to compare $\boldsymbol{p}_{1} \boldsymbol{w}_{2} \stackrel{?}{=} \boldsymbol{p}_{2} \boldsymbol{w}_{1}$ dividing by $\boldsymbol{p}_{1} \boldsymbol{p}_{2} \ldots$

Exercise: A Weighted Version

Consider two jobs $\boldsymbol{p}_{1}, \boldsymbol{p}_{2}$ of weight \boldsymbol{w}_{1} and \boldsymbol{w}_{2}. We have two possibilities:

	Job 1 first	Job 2 first
Pricing	$0 \cdot \boldsymbol{w}_{1}+\boldsymbol{p}_{1} \boldsymbol{w}_{2}$	$0 \boldsymbol{w}_{2}+\boldsymbol{p}_{2} \boldsymbol{w}_{1}$
Equivalent to	$\boldsymbol{p}_{1} \boldsymbol{w}_{2}$	$\boldsymbol{p}_{2} \boldsymbol{w}_{1}$

need to compare $\boldsymbol{p}_{1} \boldsymbol{w}_{2} \stackrel{?}{=} \boldsymbol{p}_{2} \boldsymbol{w}_{1}$
dividing by $\boldsymbol{p}_{1} \boldsymbol{p}_{2} \ldots$
equivalent to comparing $\boldsymbol{w}_{2} / \boldsymbol{p}_{2} \stackrel{?}{=} \boldsymbol{w}_{1} / \boldsymbol{p}_{1}$
$\omega_{i}=w_{i} / \boldsymbol{p}_{\boldsymbol{i}}$: Price per processing unit in dollars

Exercise: A Weighted Version

Consider two jobs $\boldsymbol{p}_{1}, \boldsymbol{p}_{2}$ of weight \boldsymbol{w}_{1} and \boldsymbol{w}_{2}. We have two possibilities:

	Job 1 first	Job 2 first
Pricing	$0 \cdot \boldsymbol{w}_{1}+\boldsymbol{p}_{1} \boldsymbol{w}_{2}$	$0 \boldsymbol{w}_{2}+\boldsymbol{p}_{2} \boldsymbol{w}_{1}$
Equivalent to	$\boldsymbol{p}_{1} \boldsymbol{w}_{2}$	$\boldsymbol{p}_{2} \boldsymbol{w}_{1}$

need to compare $\boldsymbol{p}_{1} \boldsymbol{w}_{2} \stackrel{?}{=} \boldsymbol{p}_{2} \boldsymbol{w}_{1}$
dividing by $\boldsymbol{p}_{1} \boldsymbol{p}_{2} \ldots$
equivalent to comparing $\boldsymbol{w}_{2} / \boldsymbol{p}_{2} \stackrel{?}{=} \boldsymbol{w}_{1} / \boldsymbol{p}_{1}$
$\omega_{i}=w_{i} / \boldsymbol{p}_{\boldsymbol{i}}$: Price per processing unit in dollars

Exercise: A Weighted Version

Consider two jobs $\boldsymbol{p}_{1}, \boldsymbol{p}_{2}$ of weight \boldsymbol{w}_{1} and \boldsymbol{w}_{2}. We have two possibilities:

	Job 1 first	Job 2 first
Pricing	$0 \cdot \boldsymbol{w}_{1}+\boldsymbol{p}_{1} \boldsymbol{w}_{2}$	$0 \boldsymbol{w}_{2}+\boldsymbol{p}_{2} \boldsymbol{w}_{1}$
Equivalent to	$\boldsymbol{p}_{1} \boldsymbol{w}_{2}$	$\boldsymbol{p}_{2} \boldsymbol{w}_{1}$

need to compare $\boldsymbol{p}_{1} \boldsymbol{w}_{2} \stackrel{?}{=} \boldsymbol{p}_{2} \boldsymbol{w}_{1}$
dividing by $\boldsymbol{p}_{1} \boldsymbol{p}_{2} \ldots$
equivalent to comparing $\boldsymbol{w}_{2} / \boldsymbol{p}_{2} \stackrel{?}{=} \boldsymbol{w}_{1} / \boldsymbol{p}_{1}$
$\omega_{i}=\boldsymbol{w}_{\boldsymbol{i}} / \boldsymbol{p}_{\boldsymbol{i}}$: Price per processing unit in dollars
Sort jobs in decreasing value of $\boldsymbol{\omega}_{\boldsymbol{i}}$. Schedule jobs by this value.

Exercise: A Weighted Version

Consider two jobs $\boldsymbol{p}_{1}, \boldsymbol{p}_{2}$ of weight \boldsymbol{w}_{1} and \boldsymbol{w}_{2}. We have two possibilities:

	Job 1 first	Job 2 first
Pricing	$0 \cdot \boldsymbol{w}_{1}+\boldsymbol{p}_{1} \boldsymbol{w}_{2}$	$0 \boldsymbol{w}_{2}+\boldsymbol{p}_{2} \boldsymbol{w}_{1}$
Equivalent to	$\boldsymbol{p}_{1} \boldsymbol{w}_{2}$	$\boldsymbol{p}_{2} \boldsymbol{w}_{1}$

need to compare $\boldsymbol{p}_{1} \boldsymbol{w}_{2} \stackrel{?}{=} \boldsymbol{p}_{2} \boldsymbol{w}_{1}$
dividing by $\boldsymbol{p}_{1} \boldsymbol{p}_{2} \ldots$
equivalent to comparing $\boldsymbol{w}_{2} / \boldsymbol{p}_{2} \stackrel{?}{=} \boldsymbol{w}_{1} / \boldsymbol{p}_{1}$
$\omega_{i}=\boldsymbol{w}_{\boldsymbol{i}} / \boldsymbol{p}_{\boldsymbol{i}}$: Price per processing unit in dollars
Sort jobs in decreasing value of $\boldsymbol{\omega}_{\boldsymbol{i}}$. Schedule jobs by this value.
Correctness proof: Same as the unweighted case - if there is an inversion, then by the argument above, flip these jobs, and get a better schedule.

THE END

(for now)

