Algorithms \& Models of Computation

CS/ECE 374, Fall 2020

19.3

Scheduling Jobs to Minimize Average Waiting Time

The Problem

- \boldsymbol{n} jobs $J_{1}, J_{2}, \ldots, J_{\boldsymbol{n}}$.
- Each $\boldsymbol{J}_{\boldsymbol{i}}$ has non-negative processing time $\boldsymbol{p}_{\boldsymbol{i}}$
- One server/machine/person available to process jobs.
- Schedule/order jobs to min. total or average waiting time
- Waiting time of $\boldsymbol{J}_{\boldsymbol{i}}$ in schedule $\boldsymbol{\sigma}$: sum of processing times of all jobs scheduled before $\boldsymbol{J}_{\boldsymbol{i}}$

	J_{1}	J_{2}	J_{3}	J_{4}	J_{5}	J_{6}
time	3	4	1	8	2	6

Example: schedule is $J_{1}, J_{2}, J_{3}, J_{4}, J_{5}, J_{6}$. Total waiting time is

Optimal schedule: Shortest Job First. $J_{3}, J_{5}, J_{1}, J_{2}, J_{6}, J_{4}$.

The Problem

- n jobs $J_{1}, J_{2}, \ldots, J_{n}$.
- Each $\boldsymbol{J}_{\boldsymbol{i}}$ has non-negative processing time $\boldsymbol{p}_{\boldsymbol{i}}$
- One server/machine/person available to process jobs.
- Schedule/order jobs to min. total or average waiting time
- Waiting time of $\boldsymbol{J}_{\boldsymbol{i}}$ in schedule $\boldsymbol{\sigma}$: sum of processing times of all jobs scheduled before J_{i}

	J_{1}	J_{2}	J_{3}	J_{4}	J_{5}	J_{6}
time	3	4	1	8	2	6

Example: schedule is $J_{1}, J_{2}, J_{3}, J_{4}, J_{5}, J_{6}$. Total waiting time is

$$
0+3+(3+4)+(3+4+1)+(3+4+1+8)+\ldots=
$$

The Problem

- n jobs $J_{1}, J_{2}, \ldots, J_{n}$.
- Each $\boldsymbol{J}_{\boldsymbol{i}}$ has non-negative processing time $\boldsymbol{p}_{\boldsymbol{i}}$
- One server/machine/person available to process jobs.
- Schedule/order jobs to min. total or average waiting time
- Waiting time of $\boldsymbol{J}_{\boldsymbol{i}}$ in schedule $\boldsymbol{\sigma}$: sum of processing times of all jobs scheduled before J_{i}

	J_{1}	J_{2}	J_{3}	J_{4}	J_{5}	J_{6}
time	3	4	1	8	2	6

Example: schedule is $J_{1}, J_{2}, J_{3}, J_{4}, J_{5}, J_{6}$. Total waiting time is

$$
0+3+(3+4)+(3+4+1)+(3+4+1+8)+\ldots=
$$

Optimal schedule:

The Problem

- n jobs $J_{1}, J_{2}, \ldots, J_{n}$.
- Each $\boldsymbol{J}_{\boldsymbol{i}}$ has non-negative processing time $\boldsymbol{p}_{\boldsymbol{i}}$
- One server/machine/person available to process jobs.
- Schedule/order jobs to min. total or average waiting time
- Waiting time of $\boldsymbol{J}_{\boldsymbol{i}}$ in schedule $\boldsymbol{\sigma}$: sum of processing times of all jobs scheduled before \boldsymbol{J}_{i}

	J_{1}	J_{2}	J_{3}	J_{4}	J_{5}	J_{6}
time	3	4	1	8	2	6

Example: schedule is $J_{1}, J_{2}, J_{3}, J_{4}, J_{5}, J_{6}$. Total waiting time is

$$
0+3+(3+4)+(3+4+1)+(3+4+1+8)+\ldots=
$$

Optimal schedule: Shortest Job First. $J_{3}, J_{5}, J_{1}, J_{2}, J_{6}, J_{4}$.

Optimality of Shortest Job First (SJF)

Theorem 19.1.

Shortest Job First gives an optimum schedule for the problem of minimizing total waiting time.

Proof strategy: exchange argument
Assume without loss of generality that job sorted in increasing order of processing time and hence $p_{1} \leq p_{2} \leq \ldots \leq p_{n}$ and SJF order is $J_{1}, J_{2}, \ldots, J_{n}$.

Optimality of Shortest Job First (SJF)

Theorem 19.1.

Shortest Job First gives an optimum schedule for the problem of minimizing total waiting time.

Proof strategy: exchange argument

Assume without loss of generality that job sorted in increasing order of processing time and hence $\boldsymbol{p}_{1} \leq \boldsymbol{p}_{2} \leq \ldots \leq \boldsymbol{p}_{\boldsymbol{n}}$ and SJF order is $\boldsymbol{J}_{1}, \boldsymbol{J}_{2}, \ldots, J_{n}$.

Optimality of Shortest Job First (SJF)

Theorem 19.1.

Shortest Job First gives an optimum schedule for the problem of minimizing total waiting time.

Proof strategy: exchange argument
Assume without loss of generality that job sorted in increasing order of processing time and hence $\boldsymbol{p}_{1} \leq \boldsymbol{p}_{2} \leq \ldots \leq \boldsymbol{p}_{\boldsymbol{n}}$ and SJF order is $\boldsymbol{J}_{1}, \boldsymbol{J}_{2}, \ldots, \boldsymbol{J}_{\boldsymbol{n}}$.

Optimality of SJF: Proof by picture

Optimality of SJF: Proof by picture

Optimality of SJF: Proof by picture

Optimality of SJF: Proof by picture

Optimality of SJF: Proof by picture

Inversions

Definition 19.2.
A schedule $\boldsymbol{J}_{i_{1}}, J_{i_{2}}, \ldots, J_{i_{n}}$ has an inversion if there are jobs J_{a} and $J_{\boldsymbol{b}}$ such that S schedules J_{a} before J_{b}, but $\boldsymbol{p}_{a}>p_{b}$.

Claim 19.3.
If a schedule has an inversion then there is an inversion between two adjacent scheduled jobs.

Proof: exercise.

Inversions

Definition 19.2.

A schedule $\boldsymbol{J}_{\boldsymbol{i}_{1}}, \boldsymbol{J}_{\boldsymbol{i}_{2}}, \ldots, \boldsymbol{J}_{\boldsymbol{i}_{\boldsymbol{n}}}$ has an inversion if there are jobs $\boldsymbol{J}_{\boldsymbol{a}}$ and $\boldsymbol{J}_{\boldsymbol{b}}$ such that \boldsymbol{S} schedules J_{a} before J_{b}, but $\boldsymbol{p}_{a}>p_{b}$.

Claim 19.3.

If a schedule has an inversion then there is an inversion between two adjacent scheduled jobs.

Proof: exercise.

Proof of optimality of SJF

SJF = Shortest Job First
Recall SJF order is $J_{1}, J_{2}, \ldots, J_{\boldsymbol{n}}$.

- Let $J_{i_{1}}, J_{i_{2}}, \ldots, J_{i_{n}}$ be an optimum schedule with fewest inversions.
- If schedule has no inversions then it is identical to SJF schedule and we are done.
- Otherwise there is an $1 \leq \boldsymbol{\ell}<\boldsymbol{n}$ such that $\boldsymbol{i}_{\ell}>\boldsymbol{i}_{\ell+1}$ since schedule has inversion among two adjacent scheduled jobs

Claim 19.4.
The schedule obtained from $\boldsymbol{J}_{\boldsymbol{i}_{1}}, \boldsymbol{J}_{\boldsymbol{i}_{2}}, \ldots, \boldsymbol{J}_{\boldsymbol{i}_{n}}$ by exchanging/swapping positions of jobs $J_{i_{\ell}}$ and $J_{i_{\ell+1}}$ is also optimal and has one fewer inversion.

Assuming claim we obtain a contradiction and hence optimum schedule with fewest inversions must be the SJF schedule.

Proof of optimality of SJF

SJF = Shortest Job First

Recall SJF order is $J_{1}, J_{2}, \ldots, J_{\boldsymbol{n}}$.

- Let $J_{\boldsymbol{i}_{1}}, J_{i_{2}}, \ldots, J_{i_{n}}$ be an optimum schedule with fewest inversions.
- If schedule has no inversions then it is identical to SJF schedule and we are done.
- Otherwise there is an $1 \leq \boldsymbol{\ell}<\boldsymbol{n}$ such that $\boldsymbol{i}_{\ell}>\boldsymbol{i}_{\ell+1}$ since schedule has inversion among two adjacent scheduled jobs

Claim 19.4.

The schedule obtained from $\boldsymbol{J}_{\mathbf{i}_{1}}, \boldsymbol{J}_{\boldsymbol{i}_{2}}, \ldots, \boldsymbol{J}_{\boldsymbol{i}_{n}}$ by exchanging/swapping positions of jobs $\boldsymbol{J}_{\boldsymbol{i}_{\ell}}$ and $\boldsymbol{J}_{\boldsymbol{i}_{\ell+1}}$ is also optimal and has one fewer inversion.

Assuming claim we obtain a contradiction and hence optimum schedule with fewest inversions must be the SJF schedule.

Exercise: A Weighted Version

- n jobs $J_{1}, J_{2}, \ldots, J_{n}$. $\boldsymbol{J}_{\boldsymbol{i}}$ has non-negative processing time $\boldsymbol{p}_{\boldsymbol{i}}$ and a non-negative weight w_{i}
- One server/machine/person available to process jobs.
- Schedule/order the jobs to minimize total or average waiting time
- Waiting time of $\boldsymbol{J}_{\boldsymbol{j}}$ in schedule $\boldsymbol{\sigma}$: sum of processing times of all jobs scheduled before J_{i}
- Goal: minimize total weighted waiting time.
- Formally, compute a permutation $\boldsymbol{\pi}$ that minimizes $\sum_{i=1}^{n}\left(\sum_{j=1}^{i-1} \boldsymbol{p}_{\boldsymbol{\pi}(j)}\right) \boldsymbol{w}_{\boldsymbol{\pi}(i)}$.

	J_{1}	J_{2}	J_{3}	J_{4}	J_{5}	J_{6}
time	3	4	1	8	2	6
weight	10	5	2	100	1	1

THE END

(for now)

