Algorithms \& Models of Computation

CS/ECE 374, Fall 2020

Greedy Algorithms

Lecture 19
Tuesday, November 3, 2020

Algorithms \& Models of Computation

CS/ECE 374, Fall 2020

19.1

Greedy algorithms by example

Greedy algorithms

Why don't you do right?
(1) greedy algorithms: do locally the right thing...

Problem: VertexCoverMin
Instance: Vertex Cover!Minimization
Question: A graph G.
Return the smallest subset $S \subseteq V(G)$, s.t. S touches all the edges of G.
(3) GreedyVertexCover: pick vertex with highest degree, remove, repeat.

Greedy algorithms

Why don't you do right?

(1) greedy algorithms: do locally the right thing...
(2) ... and they suck.

Problem: VertexCoverMin
Instance: Vertex Cover!Minimization
Question: A graph G.
Return the smallest subset $S \subseteq \boldsymbol{V}(\mathrm{G})$, s.t. S touches all the edges of G .
(3) GreedyVertexCover:
tex with highest degree, remove, repeat.

Greedy algorithms

Why don't you do right?

(1) greedy algorithms: do locally the right thing...
(2) ... and they suck.

Problem: VertexCoverMin

Instance: Vertex Cover!Minimization
Question: A graph G.
Return the smallest subset $S \subseteq \boldsymbol{V}(\mathrm{G})$, s.t. S touches all the edges of G .
(3) GreedyVertexCover: pick vertex with highest degree, remove, repeat.

Greedy algorithms

Why don't you do right?

(1) greedy algorithms: do locally the right thing...
(2) ... and they suck.

Problem: VertexCoverMin

Instance: Vertex Cover!Minimization
Question: A graph G.
Return the smallest subset $S \subseteq \boldsymbol{V}(\mathrm{G})$, s.t. S touches all the edges of G .
(3) GreedyVertexCover: pick vertex with highest degree, remove, repeat.

Greedy algorithms
GreedyVertexCover in action...

Greedy algorithms
GreedyVertexCover in action..

Greedy algorithms

GreedyVertexCover in action...

Greedy algorithms
GreedyVertexCover in action...

Greedy algorithms

GreedyVertexCover in action..

Observation 19.1.
GreedyVertexCover returns 4 vertices, but opt is 3 vertices.

Back to GreedyVertexCover

(1) GreedyVertexCover: pick vertex with highest degree, remove, repeat.
© Returns 4, but opt is 3!

(Can not be better than a 4/3-approximation algorithm.

- Actually it is much worse!

Back to GreedyVertexCover

(1) GreedyVertexCover: pick vertex with highest degree, remove, repeat.
(2) Returns 4, but opt is 3!

(3) Can not be better than a 4/3-approximation algorithm.

- Actually it is much worse!

Back to GreedyVertexCover

(1) GreedyVertexCover: pick vertex with highest degree, remove, repeat.
(2) Returns 4, but opt is 3!

(3) Can not be better than a 4/3-approximation algorithm.

- Actually it is much worse!

Back to GreedyVertexCover

(1) GreedyVertexCover: pick vertex with highest degree, remove, repeat.
(2) Returns 4, but opt is 3 !

(3) Can not be better than a 4/3-approximation algorithm.

- Actually it is much worse!

Greedy Vertex Cover

Theorem 19.2.

There is a graph over \boldsymbol{n} vertices, such that the smallest Vertex Cover has \boldsymbol{k} vertices, but the greedy algorithm outputs a vertex cover of size $\Theta(\boldsymbol{k} \log \boldsymbol{n})$ approximation.

Proof: Outside the scope of this class...
...left as a hard exercise to the interested reader.

Vertex Cover is NP-Hard: Believe it requires exponential time to solve exactly.

Greedy Vertex Cover

Theorem 19.2.

There is a graph over \boldsymbol{n} vertices, such that the smallest Vertex Cover has \boldsymbol{k} vertices, but the greedy algorithm outputs a vertex cover of size $\Theta(\boldsymbol{k} \log \boldsymbol{n})$ approximation.

Proof: Outside the scope of this class...
...left as a hard exercise to the interested reader.

Vertex Cover is NP-Hard: Believe it requires exponential time to solve exactly.

THE END

(for now)

