Algorithms \& Models of Computation
CS/ECE 374, Fall 2020
18.4

All Pairs Shortest Paths

Algorithms \& Models of Computation

CS/ECE 374, Fall 2020

18.4.1

Problem definition and what we can already do

Shortest Path Problems

Shortest Path Problems

Input A (undirected or directed) graph $\boldsymbol{G}=(\boldsymbol{V}, \boldsymbol{E})$ with edge lengths (or costs). For edge $\boldsymbol{e}=(\boldsymbol{u}, \boldsymbol{v}), \ell(\boldsymbol{e})=\ell(\boldsymbol{u}, \boldsymbol{v})$ is its length.
(1) Given nodes $\boldsymbol{s}, \boldsymbol{t}$ find shortest path from \boldsymbol{s} to \boldsymbol{t}.
(2) Given node \boldsymbol{s} find shortest path from \boldsymbol{s} to all other nodes.
(3) Find shortest paths for all pairs of nodes.

SSSP: Single-Source Shortest Paths

Single-Source Shortest Path Problems

Input A (undirected or directed) graph $\boldsymbol{G}=(\boldsymbol{V}, \boldsymbol{E})$ with edge lengths. For edge $\boldsymbol{e}=(\boldsymbol{u}, \boldsymbol{v}), \ell(\boldsymbol{e})=\ell(\boldsymbol{u}, \boldsymbol{v})$ is its length.
(1) Given nodes $\boldsymbol{s}, \boldsymbol{t}$ find shortest path from \boldsymbol{s} to \boldsymbol{t}.
(2) Given node \boldsymbol{s} find shortest path from \boldsymbol{s} to all other nodes.
Dijkstra's algorithm for non-negative edge lengths. Running time: $O((m+n) \log n)$
with heaps and $O(m+n \log n)$ with advanced priority queues.
Bellman-Ford algorithm for arbitrary edge lengths. Running time: $O(n m)$.

SSSP: Single-Source Shortest Paths

Single-Source Shortest Path Problems

Input A (undirected or directed) graph $\boldsymbol{G}=(\boldsymbol{V}, \boldsymbol{E})$ with edge lengths. For edge $\boldsymbol{e}=(\boldsymbol{u}, \boldsymbol{v}), \ell(\boldsymbol{e})=\boldsymbol{\ell}(\boldsymbol{u}, \boldsymbol{v})$ is its length.
(1) Given nodes $\boldsymbol{s}, \boldsymbol{t}$ find shortest path from \boldsymbol{s} to \boldsymbol{t}.
(2) Given node \boldsymbol{s} find shortest path from \boldsymbol{s} to all other nodes.

Dijkstra's algorithm for non-negative edge lengths. Running time: $\boldsymbol{O}((\boldsymbol{m}+\boldsymbol{n}) \log \boldsymbol{n})$ with heaps and $\boldsymbol{O}(\boldsymbol{m}+\boldsymbol{n} \log \boldsymbol{n})$ with advanced priority queues.
Bellman-Ford algorithm for arbitrary edge lengths. Running time: $\boldsymbol{O}(\boldsymbol{n m})$.

All-Pairs Shortest Paths

Using the shortest paths algorithms we already have...

All-Pairs Shortest Path Problem

Input A (undirected or directed) graph $\boldsymbol{G}=(\boldsymbol{V}, \boldsymbol{E})$ with edge lengths. For edge $\boldsymbol{e}=(\boldsymbol{u}, \boldsymbol{v}), \ell(\boldsymbol{e})=\ell(\boldsymbol{u}, \boldsymbol{v})$ is its length.
(1) Find shortest paths for all pairs of nodes.

Apply single-source algorithms \boldsymbol{n} times, once for each vertex.
(1) Non-negative lengths. $\boldsymbol{O}(\boldsymbol{n} \boldsymbol{m} \log \boldsymbol{n})$ with heaps and $\boldsymbol{O}\left(\boldsymbol{n} \boldsymbol{m}+n^{2} \log n\right)$ using advanced priority queues.
(2) Arbitrary edge lengths: $\boldsymbol{O}\left(\boldsymbol{n}^{2} \boldsymbol{m}\right)$
$\Theta\left(n^{4}\right)$ if $\boldsymbol{m}=\Omega\left(\boldsymbol{n}^{2}\right)$
Can we do better?

All-Pairs Shortest Paths

Using the shortest paths algorithms we already have...

All-Pairs Shortest Path Problem

Input A (undirected or directed) graph $\boldsymbol{G}=(\boldsymbol{V}, \boldsymbol{E})$ with edge lengths. For edge $\boldsymbol{e}=(\boldsymbol{u}, \boldsymbol{v}), \ell(\boldsymbol{e})=\ell(\boldsymbol{u}, \boldsymbol{v})$ is its length.
(1) Find shortest paths for all pairs of nodes.

Apply single-source algorithms \boldsymbol{n} times, once for each vertex.
(1) Non-negative lengths. $\boldsymbol{O}(\boldsymbol{n m} \log \boldsymbol{n})$ with heaps and $\boldsymbol{O}\left(\boldsymbol{n m}+\boldsymbol{n}^{2} \log \boldsymbol{n}\right)$ using advanced priority queues.
(2) Arbitrary edge lengths: $\boldsymbol{O}\left(\boldsymbol{n}^{2} \boldsymbol{m}\right)$.

$$
\Theta\left(\boldsymbol{n}^{4}\right) \text { if } \boldsymbol{m}=\Omega\left(\boldsymbol{n}^{2}\right)
$$

All-Pairs Shortest Paths

Using the shortest paths algorithms we already have...

All-Pairs Shortest Path Problem

Input A (undirected or directed) graph $\boldsymbol{G}=(\boldsymbol{V}, \boldsymbol{E})$ with edge lengths. For edge $\boldsymbol{e}=(\boldsymbol{u}, \boldsymbol{v}), \ell(\boldsymbol{e})=\ell(\boldsymbol{u}, \boldsymbol{v})$ is its length.
(1) Find shortest paths for all pairs of nodes.

Apply single-source algorithms \boldsymbol{n} times, once for each vertex.
(1) Non-negative lengths. $\boldsymbol{O}(\boldsymbol{n m} \log \boldsymbol{n})$ with heaps and $\boldsymbol{O}\left(\boldsymbol{n m}+\boldsymbol{n}^{2} \log \boldsymbol{n}\right)$ using advanced priority queues.
(2) Arbitrary edge lengths: $\boldsymbol{O}\left(\boldsymbol{n}^{2} \boldsymbol{m}\right)$.

$$
\Theta\left(\boldsymbol{n}^{4}\right) \text { if } \boldsymbol{m}=\Omega\left(\boldsymbol{n}^{2}\right)
$$

Can we do better?

THE END

(for now)

