Algorithms \& Models of Computation
CS/ECE 374, Fall 2020
18.2.3.1

Correctness of the Bellman-Ford Algorithm

Bellman-Ford Algorithm: Modified for analysis

$$
\begin{aligned}
& \text { for each } \boldsymbol{u} \in \boldsymbol{V} \text { do } \\
& d(u, 0) \leftarrow \infty \\
& d(s, 0) \leftarrow 0 \\
& \text { for } k=1 \text { to } \boldsymbol{\eta} \text { do } \\
& \text { for each } v \in V \text { do } \\
& d(v, k) \leftarrow d(v, k-1) \\
& \text { for each edge }(u, v) \in \operatorname{in}(v) \text { do } \\
& d(v, k)=\min \{d(v, k), d(u, k-1)+\ell(u, v)\} \\
& \text { for each } v \in \boldsymbol{V} \text { do } \\
& \operatorname{dist}(s, v) \leftarrow d(v, n-1)
\end{aligned}
$$

Walks computed correctly

Lemma 18.3.
For each $\boldsymbol{v}, \boldsymbol{d}(\boldsymbol{v}, \boldsymbol{k})$ is the length of a shortest walk from \boldsymbol{s} to \boldsymbol{v} with at most \boldsymbol{k} hops.
Proof.
Standard induction (left as exercise).

Bellman-Ford computes the shortest paths correctly

Lemma 18.4.

If \boldsymbol{G} does not has a negative length cycle reachable from $\boldsymbol{s} \Longrightarrow \forall \mathbf{v}$: $\boldsymbol{d}(v, n)=d(v, n-1)$.

Also, $\boldsymbol{d}(\boldsymbol{v}, \boldsymbol{n}-\mathbf{1})$ is the length of the shortest path between \boldsymbol{s} and \boldsymbol{v}.

Proof.

Shortest walk from \boldsymbol{s} to reachable vertex is a path [not repeated vertex] (otherwise \exists neg cycle).
A path has at most $n-1$ edges.
\Longrightarrow Len shortest walk from \boldsymbol{s} to \boldsymbol{v} with at most $\boldsymbol{n}-\mathbf{1}$ edges
$=$ Len shortest walk from s to \boldsymbol{v}
$=$ Len shortest path from s to v

Bellman-Ford computes the shortest paths correctly

Lemma 18.4.

If \boldsymbol{G} does not has a negative length cycle reachable from $\boldsymbol{s} \Longrightarrow \forall \boldsymbol{v}$: $\boldsymbol{d}(v, n)=d(v, n-1)$.

Also, $\boldsymbol{d}(\boldsymbol{v}, \boldsymbol{n}-\mathbf{1})$ is the length of the shortest path between \boldsymbol{s} and \boldsymbol{v}.

Proof.

Shortest walk from \boldsymbol{s} to reachable vertex is a path [not repeated vertex] (otherwise \exists neg cycle).
A path has at most $\boldsymbol{n} \mathbf{- 1}$ edges.

```
Len shortest walk from s to v}\mathrm{ with at most n - 1 edges
= Len shortest walk from s to v
= Len shortest nath from s to v
By Lemma 18.3
d(v,n)=d(v,n-1)=\operatorname{dist}(s,v), for all v.
```


Bellman-Ford computes the shortest paths correctly

Lemma 18.4.

If \boldsymbol{G} does not has a negative length cycle reachable from $\boldsymbol{s} \Longrightarrow \forall \boldsymbol{v}$: $\boldsymbol{d}(v, n)=d(v, n-1)$.

Also, $\boldsymbol{d}(\boldsymbol{v}, \boldsymbol{n}-\mathbf{1})$ is the length of the shortest path between \boldsymbol{s} and \boldsymbol{v}.

Proof.

Shortest walk from \boldsymbol{s} to reachable vertex is a path [not repeated vertex] (otherwise \exists neg cycle).
A path has at most $\boldsymbol{n} \mathbf{- 1}$ edges.
\Longrightarrow Len shortest walk from \boldsymbol{s} to \boldsymbol{v} with at most $\boldsymbol{n}-\mathbf{1}$ edges
$=$ Len shortest walk from s to v
$=$ Len shortest path from \boldsymbol{s} to \mathbf{v}
By Lemma 18.3

Bellman-Ford computes the shortest paths correctly

Lemma 18.4.

If \boldsymbol{G} does not has a negative length cycle reachable from $\boldsymbol{s} \Longrightarrow \forall \boldsymbol{v}$: $\boldsymbol{d}(v, n)=d(v, n-1)$.

Also, $\boldsymbol{d}(\boldsymbol{v}, \boldsymbol{n}-\mathbf{1})$ is the length of the shortest path between \boldsymbol{s} and \boldsymbol{v}.

Proof.

Shortest walk from s to reachable vertex is a path [not repeated vertex] (otherwise \exists neg cycle).
A path has at most $\boldsymbol{n} \mathbf{- 1}$ edges.
\Longrightarrow Len shortest walk from \boldsymbol{s} to \boldsymbol{v} with at most $\boldsymbol{n}-\mathbf{1}$ edges
$=$ Len shortest walk from \boldsymbol{s} to \boldsymbol{v}
$=$ Len shortest path from s to v.

Bellman-Ford computes the shortest paths correctly

Lemma 18.4.

If \boldsymbol{G} does not has a negative length cycle reachable from $\boldsymbol{s} \Longrightarrow \forall \boldsymbol{v}$: $\boldsymbol{d}(v, n)=d(v, n-1)$.

Also, $\boldsymbol{d}(\boldsymbol{v}, \boldsymbol{n}-\mathbf{1})$ is the length of the shortest path between \boldsymbol{s} and \boldsymbol{v}.

Proof.

Shortest walk from \boldsymbol{s} to reachable vertex is a path [not repeated vertex] (otherwise \exists neg cycle).
A path has at most $\boldsymbol{n} \mathbf{- 1}$ edges.
\Longrightarrow Len shortest walk from \boldsymbol{s} to \boldsymbol{v} with at most $\boldsymbol{n}-\mathbf{1}$ edges
$=$ Len shortest walk from \boldsymbol{s} to \boldsymbol{v}
$=$ Len shortest path from \boldsymbol{s} to \boldsymbol{v}.

Bellman-Ford computes the shortest paths correctly

Lemma 18.4.

If \boldsymbol{G} does not has a negative length cycle reachable from $\boldsymbol{s} \Longrightarrow \forall \mathbf{v}$: $\boldsymbol{d}(v, n)=d(v, n-1)$.

Also, $\boldsymbol{d}(\boldsymbol{v}, \boldsymbol{n}-\mathbf{1})$ is the length of the shortest path between \boldsymbol{s} and \boldsymbol{v}.

Proof.

Shortest walk from \boldsymbol{s} to reachable vertex is a path [not repeated vertex] (otherwise \exists neg cycle).
A path has at most $\boldsymbol{n} \mathbf{- 1}$ edges.
\Longrightarrow Len shortest walk from \boldsymbol{s} to \boldsymbol{v} with at most $\boldsymbol{n}-\mathbf{1}$ edges
$=$ Len shortest walk from \boldsymbol{s} to \boldsymbol{v}
$=$ Len shortest path from \boldsymbol{s} to \boldsymbol{v}.
By Lemma 18.3 : $\boldsymbol{d}(\boldsymbol{v}, \boldsymbol{n})=\boldsymbol{d}(\boldsymbol{v}, \boldsymbol{n}-1)=\operatorname{dist}(\boldsymbol{s}, \boldsymbol{v})$, for all \boldsymbol{v}.

THE END

(for now)

