Algorithms & Models of Computation

CS/ECE 374, Fall 2020

18.1.4

Applications of shortest path for negative weights on edges

Why negative lengths?

Several Applications

- Shortest path problems useful in modeling many situations in some negative lengths are natural
- Negative length cycle can be used to find arbitrage opportunities in currency trading
- Important sub-routine in algorithms for more general problem: minimum-cost flow

Negative cycles

Application to Currency Trading

Currency Trading

<u>Input</u>: n currencies and for each ordered pair (a, b) the <u>exchange rate</u> for converting one unit of a into one unit of b.

Questions:

- Is there an arbitrage opportunity?
- ② Given currencies s, t what is the best way to convert s to t (perhaps via other intermediate currencies)?

Concrete example:

- **2 1** Euro = **1.3617** US dollar
- 1 US Dollar 7.1 Chinese Yuan.

Thus, if exchanging $1 \ \$ \to \mathsf{Yuan}$

 \rightarrow Euro \rightarrow \$, we get: **0.1116** *

1.3617 * 7.1 = 1.07896\$.

Observation: If we convert currency i to j via intermediate currencies k_1, k_2, \ldots, k_h then one unit of i yields $exch(i, k_1) \times exch(k_1, k_2) \ldots \times exch(k_h, j)$ units of j.

Create currency trading directed graph G = (V, E):

- ① For each currency i there is a node $v_i \in V$
- ② $E = V \times V$: an edge for each pair of currencies

- lacktriangle There is an arbitrage opportunity if and only if lacktriangle has a negative length cycle.
- The best way to convert currency i to currency j is via a shortest path in G from to j. If d is the distance from i to j then one unit of i can be converted into 2^d units of j.

Observation: If we convert currency i to j via intermediate currencies k_1, k_2, \ldots, k_h then one unit of i yields $exch(i, k_1) \times exch(k_1, k_2) \ldots \times exch(k_h, j)$ units of j.

Create currency trading directed graph G = (V, E):

- lacksquare For each currency i there is a node $v_i \in V$
- **2** $\boldsymbol{E} = \boldsymbol{V} \times \boldsymbol{V}$: an edge for each pair of currencies
- lacktriangledown edge length $\ell(\mathbf{v_i},\mathbf{v_j}) = -\log(exch(i,j))$ can be negative

- $lue{}$ There is an arbitrage opportunity if and only if $lue{}$ has a negative length cycle.
- ② The best way to convert currency i to currency j is via a shortest path in G from to j. If d is the distance from i to j then one unit of i can be converted into 2^d units of j.

Observation: If we convert currency i to j via intermediate currencies k_1, k_2, \ldots, k_h then one unit of i yields $exch(i, k_1) \times exch(k_1, k_2) \ldots \times exch(k_h, j)$ units of j.

Create currency trading directed graph G = (V, E):

- lacksquare For each currency i there is a node $v_i \in V$
- **2** $\boldsymbol{E} = \boldsymbol{V} \times \boldsymbol{V}$: an edge for each pair of currencies
- ullet edge length $\ell(\mathbf{v_i}, \mathbf{v_j}) = -\log(\mathbf{exch}(\mathbf{i}, \mathbf{j}))$ can be negative

- lacktriangledown There is an arbitrage opportunity if and only if lacktriangledown has a negative length cycle.
- ② The best way to convert currency i to currency j is via a shortest path in G from to j. If d is the distance from i to j then one unit of i can be converted into 2^d units of j.

Observation: If we convert currency i to j via intermediate currencies k_1, k_2, \ldots, k_h then one unit of i yields $exch(i, k_1) \times exch(k_1, k_2) \ldots \times exch(k_h, j)$ units of j.

Create currency trading directed graph G = (V, E):

- lacksquare For each currency i there is a node $v_i \in V$
- **2** $\boldsymbol{E} = \boldsymbol{V} \times \boldsymbol{V}$: an edge for each pair of currencies
- ullet edge length $\ell(\mathbf{v_i}, \mathbf{v_j}) = -\log(\mathbf{exch}(\mathbf{i}, \mathbf{j}))$ can be negative

- lacktriangle There is an arbitrage opportunity if and only if lacktriangle has a negative length cycle.
- ② The best way to convert currency i to currency j is via a shortest path in G from i to j. If d is the distance from i to j then one unit of i can be converted into 2^d units of j.

Math recall - relevant information

THE END

...

(for now)