Algorithms \& Models of Computation

CS/ECE 374, Fall 2020

Dynamic Programming: Shortest Paths and DFA to Reg Expressions

Lecture 18
Thursday, October 29, 2020

Algorithms \& Models of Computation
 CS/ECE 374, Fall 2020
 18.1
 Shortest Paths with Negative Length Edges

Algorithms \& Models of Computation
 CS/ECE 374, Fall 2020
 18.1.1
 Why Dijkstra's algorithm fails with negative edges

Single-Source Shortest Paths with Negative Edge Lengths

Problem statement

Single-Source Shortest Path

Problems

Input: A directed graph $\boldsymbol{G}=(\boldsymbol{V}, \boldsymbol{E})$ with arbitrary (including negative) edge lengths. For edge $\boldsymbol{e}=(\boldsymbol{u}, \boldsymbol{v})$, $\ell(\boldsymbol{e})=\ell(\boldsymbol{u}, \boldsymbol{v})$ is its length.
(1) Given nodes $\boldsymbol{s}, \boldsymbol{t}$ find shortest path from s to t.
(2) Given node s find shortest path from \boldsymbol{s} to all other nodes.

Single-Source Shortest Paths with Negative Edge Lengths

Problem statement

Single-Source Shortest Path
 Problems

Input: A directed graph $\boldsymbol{G}=(\boldsymbol{V}, \boldsymbol{E})$ with arbitrary (including negative) edge lengths. For edge $\boldsymbol{e}=(\boldsymbol{u}, \boldsymbol{v})$, $\ell(\boldsymbol{e})=\ell(\boldsymbol{u}, \boldsymbol{v})$ is its length.
(1) Given nodes $\boldsymbol{s}, \boldsymbol{t}$ find shortest path from s to t.
(2) Given node s find shortest path from s to all other nodes.

What are the distances computed by Dijkstra's algorithm?

The distance as computed by Dijkstra algorithm starting from s :
(A) $s=0, x=5, y=1, z=0$.
(B) $s=0, x=1, y=2, z=5$.
(c) $s=0, x=5, y=1, z=2$.
(D) IDK.

Dijkstra's Algorithm and Negative Lengths

With negative length edges, Dijkstra's algorithm can fail

Dijkstra's Algorithm and Negative Lengths

With negative length edges, Dijkstra's algorithm can fail

Dijkstra's Algorithm and Negative Lengths

With negative length edges, Dijkstra's algorithm can fail

Dijkstra's Algorithm and Negative Lengths

With negative length edges, Dijkstra's algorithm can fail

Dijkstra's Algorithm and Negative Lengths

With negative length edges, Dijkstra's algorithm can fail

Dijkstra's Algorithm and Negative Lengths

With negative length edges, Dijkstra's algorithm can fail

Dijkstra's Algorithm and Negative Lengths

With negative length edges, Dijkstra's algorithm can fail

Dijkstra's Algorithm and Negative Lengths

With negative length edges, Dijkstra's algorithm can fail

False assumption: Dijkstra's algorithm is based on the assumption that if $\boldsymbol{s}=\boldsymbol{v}_{\mathbf{0}} \rightarrow \boldsymbol{v}_{\mathbf{1}} \rightarrow \boldsymbol{v}_{\mathbf{2}} \ldots \rightarrow \boldsymbol{v}_{\boldsymbol{k}}$ is a shortest path from \boldsymbol{s} to $\boldsymbol{v}_{\boldsymbol{k}}$ then $\boldsymbol{\operatorname { d i s t }}\left(\boldsymbol{s}, \boldsymbol{v}_{\boldsymbol{i}}\right) \leq \boldsymbol{\operatorname { d i s t }}\left(\boldsymbol{s}, \boldsymbol{v}_{\boldsymbol{i}+\boldsymbol{1}}\right)$ for $\mathbf{0} \leq \boldsymbol{i}<\boldsymbol{k}$. Holds true only for non-negative edge lengths.

Shortest Paths with Negative Lengths

Lemma 18.1.

Let \boldsymbol{G} be a directed graph with arbitrary edge lengths. If $\boldsymbol{s}=\boldsymbol{v}_{\mathbf{0}} \rightarrow \boldsymbol{v}_{\mathbf{1}} \rightarrow \mathbf{v}_{\mathbf{2}} \rightarrow \ldots \rightarrow \boldsymbol{v}_{\boldsymbol{k}}$ is a shortest path from \boldsymbol{s} to $\boldsymbol{v}_{\boldsymbol{k}}$ then for $\mathbf{1} \leq \boldsymbol{i}<\boldsymbol{k}$:
(1) $\boldsymbol{s}=\boldsymbol{v}_{\mathbf{0}} \rightarrow \boldsymbol{v}_{\mathbf{1}} \rightarrow \boldsymbol{v}_{\mathbf{2}} \rightarrow \ldots \rightarrow \boldsymbol{v}_{\boldsymbol{i}}$ is a shortest path from \boldsymbol{s} to $\boldsymbol{v}_{\boldsymbol{i}}$
(2) False: $\operatorname{dist}\left(s, v_{i}\right) \leq \operatorname{dist}\left(s, v_{k}\right)$ for $1 \leq i<k$. Holds true only for non-negative Cannot explore nodes in increasing order of distance! We need other strategies.

Shortest Paths with Negative Lengths

Lemma 18.1.

Let \boldsymbol{G} be a directed graph with arbitrary edge lengths. If $\boldsymbol{s}=\boldsymbol{v}_{\mathbf{0}} \rightarrow \boldsymbol{v}_{\mathbf{1}} \rightarrow \mathbf{v}_{\mathbf{2}} \rightarrow \ldots \rightarrow \boldsymbol{v}_{\boldsymbol{k}}$ is a shortest path from \boldsymbol{s} to $\boldsymbol{v}_{\boldsymbol{k}}$ then for $\mathbf{1} \leq \boldsymbol{i}<\boldsymbol{k}$:
(1) $\boldsymbol{s}=\boldsymbol{v}_{\mathbf{0}} \rightarrow \boldsymbol{v}_{\mathbf{1}} \rightarrow \boldsymbol{v}_{\mathbf{2}} \rightarrow \ldots \rightarrow \boldsymbol{v}_{\boldsymbol{i}}$ is a shortest path from \boldsymbol{s} to $\boldsymbol{v}_{\boldsymbol{i}}$
(2) False: $\boldsymbol{\operatorname { d i s }} \boldsymbol{t}\left(\boldsymbol{s}, \boldsymbol{v}_{\boldsymbol{i}}\right) \leq \boldsymbol{\operatorname { d i s }} \boldsymbol{t}\left(\boldsymbol{s}, \boldsymbol{v}_{\boldsymbol{k}}\right)$ for $\mathbf{1} \leq \boldsymbol{i}<\boldsymbol{k}$. Holds true only for non-negative edge lengths.

Cannot explore nodes in increasing order of distance! We need other strategies.

Shortest Paths with Negative Lengths

Lemma 18.1.

Let \boldsymbol{G} be a directed graph with arbitrary edge lengths. If $\boldsymbol{s}=\boldsymbol{v}_{\mathbf{0}} \rightarrow \boldsymbol{v}_{\mathbf{1}} \rightarrow \mathbf{v}_{\mathbf{2}} \rightarrow \ldots \rightarrow \boldsymbol{v}_{\boldsymbol{k}}$ is a shortest path from \boldsymbol{s} to $\boldsymbol{v}_{\boldsymbol{k}}$ then for $\mathbf{1} \leq \boldsymbol{i}<\boldsymbol{k}$:
(1) $\boldsymbol{s}=\boldsymbol{v}_{0} \rightarrow \boldsymbol{v}_{1} \rightarrow \boldsymbol{v}_{\mathbf{2}} \rightarrow \ldots \rightarrow \boldsymbol{v}_{\boldsymbol{i}}$ is a shortest path from \boldsymbol{s} to $\boldsymbol{v}_{\boldsymbol{i}}$
(2) False: $\boldsymbol{\operatorname { d i s t }}\left(\boldsymbol{s}, \boldsymbol{v}_{\boldsymbol{i}}\right) \leq \boldsymbol{\operatorname { d i s t }}\left(\boldsymbol{s}, \boldsymbol{v}_{\boldsymbol{k}}\right)$ for $\mathbf{1} \leq \boldsymbol{i}<\boldsymbol{k}$. Holds true only for non-negative edge lengths.

Cannot explore nodes in increasing order of distance! We need other strategies.

THE END

(for now)

