Algorithms \& Models of Computation
 CS/ECE 374, Fall 2020
 17.4
 Shortest path trees and variants

Algorithms \& Models of Computation

CS/ECE 374, Fall 2020

17.4.1

Shortest Path Tree

Shortest Path Tree

Dijkstra's algorithm finds the shortest path distances from s to \boldsymbol{V}. Question: How do we find the paths themselves?

Shortest Path Tree

Dijkstra's algorithm finds the shortest path distances from s to \boldsymbol{V}. Question: How do we find the paths themselves?

```
\(Q=\) make \(P Q()\)
insert ( \(Q,(s, 0)\) )
\(\operatorname{prev}(s) \leftarrow\) null
for each node \(\boldsymbol{u} \neq \boldsymbol{s}\) do
        insert \((\boldsymbol{Q},(\boldsymbol{u}, \infty))\)
        \(\operatorname{prev}(\boldsymbol{u}) \leftarrow\) null
\(\boldsymbol{X}=\emptyset\)
for \(\boldsymbol{i}=\mathbf{1}\) to \(|\boldsymbol{V}|\) do
    \((v, \operatorname{dist}(s, v))=\) extractMin \((Q)\)
    \(\boldsymbol{X}=\boldsymbol{X} \cup\{v\}\)
    for each \(u\) in \(\operatorname{Adj}(v)\) do
            if \((\operatorname{dist}(s, v)+\ell(v, u)<\operatorname{dist}(s, u))\) then
                \(\operatorname{decreaseKey}(\boldsymbol{Q},(\boldsymbol{u}, \operatorname{dist}(\boldsymbol{s}, \boldsymbol{v})+\ell(\boldsymbol{v}, \boldsymbol{u})))\)
                \(\operatorname{prev}(u)=\boldsymbol{v}\)
```


Shortest Path Tree

Lemma

The edge set $(\boldsymbol{u}, \operatorname{prev}(\boldsymbol{u}))$ is the reverse of a shortest path tree rooted at \boldsymbol{s}. For each \boldsymbol{u}, the reverse of the path from \boldsymbol{u} to \boldsymbol{s} in the tree is a shortest path from \boldsymbol{s} to \boldsymbol{u}.

Proof Sketch.

(1) The edge set $\{(\boldsymbol{u}, \operatorname{prev}(\boldsymbol{u})) \mid \boldsymbol{u} \in \boldsymbol{V}\}$ induces a directed in-tree rooted at \boldsymbol{s} (Why?)
(2) Use induction on $|\boldsymbol{X}|$ to argue that the tree is a shortest path tree for nodes in \boldsymbol{V}.

Shortest paths to \mathbf{s}

Dijkstra's algorithm gives shortest paths from \boldsymbol{s} to all nodes in \boldsymbol{V}. How do we find shortest paths from all of \boldsymbol{V} to \boldsymbol{s} ?
(1) In undirected graphs shortest path from s to u is a shortest path from u to s so
there is no need to distinguish
(2) In directed graphs, use Dijkstra's algorithm in $G^{\text {rev }}$

Shortest paths to \mathbf{s}

Dijkstra's algorithm gives shortest paths from \boldsymbol{s} to all nodes in \boldsymbol{V}. How do we find shortest paths from all of \boldsymbol{V} to \boldsymbol{s} ?
(1) In undirected graphs shortest path from \boldsymbol{s} to \boldsymbol{u} is a shortest path from \boldsymbol{u} to \boldsymbol{s} so there is no need to distinguish.
(2) In directed graphs, use Dijkstra's algorithm in $\boldsymbol{G}^{\text {rev }}$!

THE END

(for now)

