Algorithms \& Models of Computation CS/ECE 374, Fall 2020
 17.3.6
 How to compute the ith closest vertex?

Finding the ith closest node

(1) \boldsymbol{X} contains the $\boldsymbol{i}-\mathbf{1}$ closest nodes to \boldsymbol{s}
(2) Want to find the $\boldsymbol{i t h}$ closest node from $\boldsymbol{V}-\boldsymbol{X}$.
(1) For each $\boldsymbol{u} \in \boldsymbol{V}-\boldsymbol{X}$ let $\boldsymbol{P}(\boldsymbol{s}, \boldsymbol{u}, \boldsymbol{X})$ be a shortest path from \boldsymbol{s} to \boldsymbol{u} using only nodes in \boldsymbol{X} as intermediate vertices.
(2) Let $\boldsymbol{d}^{\prime}(\boldsymbol{s}, \boldsymbol{u})$ be the length of $\boldsymbol{P}(\boldsymbol{s}, \boldsymbol{u}, \boldsymbol{X})$

```
Observations: for each u\inV - X,
(1) dist(s,u)\leq\mp@subsup{d}{}{\prime}(s,u) since we are constraining the paths
(2) d}(s,u)=\mp@subsup{\operatorname{min}}{t\inX}{}(\operatorname{dist}(s,t)+\ell(t,u))-Why
Lemma ( }\mp@subsup{d}{}{\prime}\mathrm{ has the right value for ith vertex)
If v}\mathrm{ is the ith closest node to }\boldsymbol{s}\mathrm{ , then }\mp@subsup{\boldsymbol{d}}{}{\prime}(\boldsymbol{s},\boldsymbol{v})=\operatorname{dist}(\boldsymbol{s},\boldsymbol{v})\mathrm{ .
```


Finding the ith closest node

(1) \boldsymbol{X} contains the $\boldsymbol{i}-\mathbf{1}$ closest nodes to \boldsymbol{s}
(2) Want to find the \boldsymbol{i} th closest node from $\boldsymbol{V}-\boldsymbol{X}$.
(1) For each $\boldsymbol{u} \in \boldsymbol{V}-\boldsymbol{X}$ let $\boldsymbol{P}(\boldsymbol{s}, \boldsymbol{u}, \boldsymbol{X})$ be a shortest path from \boldsymbol{s} to \boldsymbol{u} using only nodes in \boldsymbol{X} as intermediate vertices.
(2) Let $\boldsymbol{d}^{\prime}(\boldsymbol{s}, \boldsymbol{u})$ be the length of $\boldsymbol{P}(\boldsymbol{s}, \boldsymbol{u}, \boldsymbol{X})$

Observations: for each $\boldsymbol{u} \in \boldsymbol{V}-\boldsymbol{X}$,
(1) $\operatorname{dist}(\boldsymbol{s}, \boldsymbol{u}) \leq \boldsymbol{d}^{\prime}(\boldsymbol{s}, \boldsymbol{u})$ since we are constraining the paths
(2) $d^{\prime}(s, u)=\min _{t \in X}(\operatorname{dist}(s, t)+\ell(t, u))-$ Why?

Lemma (\boldsymbol{d}^{\prime} has the right value for ith vertex)
If \boldsymbol{v} is the \boldsymbol{i} th closest node to \boldsymbol{s}, then $\boldsymbol{d}^{\prime}(\boldsymbol{s}, \boldsymbol{v})=\operatorname{dist}(\boldsymbol{s}, \boldsymbol{v})$.

Finding the ith closest node

(1) \boldsymbol{X} contains the $\boldsymbol{i}-\mathbf{1}$ closest nodes to \boldsymbol{s}
(2) Want to find the $\boldsymbol{i t h}$ closest node from $\boldsymbol{V}-\boldsymbol{X}$.
(1) For each $\boldsymbol{u} \in \boldsymbol{V}-\boldsymbol{X}$ let $\boldsymbol{P}(\boldsymbol{s}, \boldsymbol{u}, \boldsymbol{X})$ be a shortest path from \boldsymbol{s} to \boldsymbol{u} using only nodes in \boldsymbol{X} as intermediate vertices.
(2) Let $\boldsymbol{d}^{\prime}(\boldsymbol{s}, \boldsymbol{u})$ be the length of $\boldsymbol{P}(\boldsymbol{s}, \boldsymbol{u}, \boldsymbol{X})$

Observations: for each $\boldsymbol{u} \in \boldsymbol{V}-\boldsymbol{X}$,
(1) $\operatorname{dist}(\boldsymbol{s}, \boldsymbol{u}) \leq \boldsymbol{d}^{\prime}(\boldsymbol{s}, \boldsymbol{u})$ since we are constraining the paths
(2) $d^{\prime}(s, u)=\min _{t \in X}(\operatorname{dist}(s, t)+\ell(t, u))-$ Why?

Lemma (\boldsymbol{d}^{\prime} has the right value for \boldsymbol{i} th vertex)
If \boldsymbol{v} is the \boldsymbol{i} th closest node to \boldsymbol{s}, then $\boldsymbol{d}^{\prime}(\boldsymbol{s}, \boldsymbol{v})=\operatorname{dist}(\boldsymbol{s}, \boldsymbol{v})$.

Finding the ith closest node

Lemma (\boldsymbol{d}^{\prime} has the right value for \boldsymbol{i} th vertex)

Given:
(1) X: Set of $\boldsymbol{i} \mathbf{- 1}$ closest nodes to \boldsymbol{s}.
(2) $d^{\prime}(s, u)=\min _{t \in X}(\operatorname{dist}(s, t)+\ell(t, u))$

If \boldsymbol{v} is an ith closest node to \boldsymbol{s}, then $\boldsymbol{d}^{\prime}(\boldsymbol{s}, \boldsymbol{v})=\operatorname{dist}(\boldsymbol{s}, \boldsymbol{v})$.

Proof.

Let \boldsymbol{v} be the \boldsymbol{i} th closest node to \boldsymbol{s}. Then there is a shortest path \boldsymbol{P} from \boldsymbol{s} to \boldsymbol{v} that contains only nodes in \boldsymbol{X} as intermediate nodes (see previous claim). Therefore $d^{\prime}(s, v)=\operatorname{dist}(s, v)$.

Finding the ith closest node

Lemma (\boldsymbol{d}^{\prime} has the right value for \boldsymbol{i} th vertex)
If \boldsymbol{v} is an ith closest node to \boldsymbol{s}, then $\boldsymbol{d}^{\prime}(\boldsymbol{s}, \boldsymbol{v})=\operatorname{dist}(\boldsymbol{s}, \boldsymbol{v})$.

Corollary

The \boldsymbol{i} th closest node to \boldsymbol{s} is the node $\boldsymbol{v} \in \mathbf{V}-\boldsymbol{X}$ such that $\boldsymbol{d}^{\prime}(\boldsymbol{s}, \boldsymbol{v})=\min _{u \in \boldsymbol{v}-\boldsymbol{X}} \boldsymbol{d}^{\prime}(\boldsymbol{s}, \boldsymbol{u})$.

Proof.

For every node $\boldsymbol{u} \in \boldsymbol{V}-\boldsymbol{X}, \operatorname{dist}(\boldsymbol{s}, \boldsymbol{u}) \leq \boldsymbol{d}^{\prime}(\boldsymbol{s}, \boldsymbol{u})$ and for the \boldsymbol{i} th closest node \boldsymbol{v}, $\operatorname{dist}(\boldsymbol{s}, \boldsymbol{v})=\boldsymbol{d}^{\prime}(\boldsymbol{s}, \boldsymbol{v})$. Moreover, $\operatorname{dist}(\boldsymbol{s}, \boldsymbol{u}) \geq \operatorname{dist}(\boldsymbol{s}, \boldsymbol{v})$ for each $\boldsymbol{u} \in \boldsymbol{V}-\boldsymbol{X}$.

Algorithm

$$
\begin{aligned}
& \text { Initialize for each node } \boldsymbol{v}: \operatorname{dist}(\boldsymbol{s}, \boldsymbol{v})=\infty \\
& \text { Initialize } \boldsymbol{X}=\emptyset, \boldsymbol{d}^{\prime}(\boldsymbol{s}, \boldsymbol{s})=\mathbf{0} \\
& \text { for } \boldsymbol{i}=\mathbf{1} \text { to }|\boldsymbol{V}| \text { do } \\
& \quad(* \text { Invariant: } \boldsymbol{X} \text { contains the } \boldsymbol{i}-\mathbf{1} \text { closest nodes to } \boldsymbol{s} *) \\
& \quad\left(* \text { Invariant: } \boldsymbol{d}^{\prime}(\boldsymbol{s}, \boldsymbol{u}) \text { is shortest path distance from } \boldsymbol{u} \text { to } \boldsymbol{s}\right. \\
& \text { using only } \boldsymbol{X} \text { as intermediate nodes*) } \\
& \text { Let } \boldsymbol{v} \text { be such that } \boldsymbol{d}^{\prime}(\boldsymbol{s}, \boldsymbol{v})=\min _{\boldsymbol{u} \in \boldsymbol{v}-\boldsymbol{x}} \boldsymbol{d}^{\prime}(\boldsymbol{s}, \boldsymbol{u}) \\
& \operatorname{dist}(\boldsymbol{s}, \boldsymbol{v})=\boldsymbol{d}^{\prime}(\boldsymbol{s}, \boldsymbol{v}) \\
& \boldsymbol{X}=\boldsymbol{X} \cup\{\boldsymbol{v}\} \\
& \text { for each node } \boldsymbol{u} \text { in } \boldsymbol{V}-\boldsymbol{X} \text { do } \\
& \quad \boldsymbol{d}^{\prime}(\boldsymbol{s}, \boldsymbol{u})=\min _{\boldsymbol{t} \in \boldsymbol{X}}(\operatorname{dist}(\boldsymbol{s}, \boldsymbol{t})+\boldsymbol{\ell}(\boldsymbol{t}, \boldsymbol{u}))
\end{aligned}
$$

Correctness: By induction on i using previous lemmas.
Running time: $\boldsymbol{O}(\boldsymbol{n} \cdot(\boldsymbol{n}+\boldsymbol{m}))$ time.
(1) \boldsymbol{n} outer iterations. In each iteration, $d^{\prime}(s, u)$ for each u by scanning all edges out of nodes in $X ; O(m+n)$ time/iteration.

Algorithm

```
Initialize for each node \(\boldsymbol{v}: \operatorname{dist}(\boldsymbol{s}, \boldsymbol{v})=\infty\)
Initialize \(\boldsymbol{X}=\emptyset, \boldsymbol{d}^{\prime}(\boldsymbol{s}, \boldsymbol{s})=\mathbf{0}\)
for \(\boldsymbol{i}=\mathbf{1}\) to \(|\boldsymbol{V}|\) do
    (* Invariant: \(\boldsymbol{X}\) contains the \(\boldsymbol{i} \mathbf{- 1}\) closest nodes to \(\boldsymbol{s}\) *)
    (* Invariant: \(\boldsymbol{d}^{\prime}(\boldsymbol{s}, \boldsymbol{u})\) is shortest path distance from \(\boldsymbol{u}\) to \(\boldsymbol{s}\)
        using only \(\boldsymbol{X}\) as intermediate nodes*)
    Let \(\boldsymbol{v}\) be such that \(\boldsymbol{d}^{\prime}(\boldsymbol{s}, \boldsymbol{v})=\min _{\boldsymbol{u} \in \boldsymbol{v}-\boldsymbol{x}} \boldsymbol{d}^{\prime}(\boldsymbol{s}, \boldsymbol{u})\)
    \(\operatorname{dist}(s, v)=d^{\prime}(s, v)\)
    \(X=X \cup\{v\}\)
    for each node \(\boldsymbol{u}\) in \(\boldsymbol{V}-\boldsymbol{X}\) do
        \(d^{\prime}(\boldsymbol{s}, \boldsymbol{u})=\min _{t \in X}(\operatorname{dist}(\boldsymbol{s}, \boldsymbol{t})+\ell(\boldsymbol{t}, \boldsymbol{u}))\)
```

Correctness: By induction on \boldsymbol{i} using previous lemmas.
(1) \boldsymbol{n} outer iterations. In each iteration, $\boldsymbol{d}^{\prime}(\boldsymbol{s}, \boldsymbol{u})$ for each \boldsymbol{u} by scanning all edges out of nodes in $\boldsymbol{X} ; \boldsymbol{O}(\boldsymbol{m}+\boldsymbol{n})$ time/iteration.

Algorithm

```
Initialize for each node \(\boldsymbol{v}: \operatorname{dist}(\boldsymbol{s}, \boldsymbol{v})=\infty\)
Initialize \(\boldsymbol{X}=\emptyset, \boldsymbol{d}^{\prime}(\boldsymbol{s}, \boldsymbol{s})=\mathbf{0}\)
for \(\boldsymbol{i}=\mathbf{1}\) to \(|\boldsymbol{V}|\) do
    (* Invariant: \(\boldsymbol{X}\) contains the \(\boldsymbol{i}-\mathbf{1}\) closest nodes to \(\boldsymbol{s}\) *)
    (* Invariant: \(\boldsymbol{d}^{\prime}(\boldsymbol{s}, \boldsymbol{u})\) is shortest path distance from \(\boldsymbol{u}\) to \(\boldsymbol{s}\)
        using only \(\boldsymbol{X}\) as intermediate nodes*)
    Let \(\boldsymbol{v}\) be such that \(\boldsymbol{d}^{\prime}(\boldsymbol{s}, \boldsymbol{v})=\min _{\boldsymbol{u} \in \boldsymbol{v}-\boldsymbol{x}} \boldsymbol{d}^{\prime}(\boldsymbol{s}, \boldsymbol{u})\)
    \(\operatorname{dist}(s, v)=d^{\prime}(s, v)\)
    \(X=X \cup\{v\}\)
    for each node \(\boldsymbol{u}\) in \(\boldsymbol{V}-\boldsymbol{X}\) do
        \(d^{\prime}(\boldsymbol{s}, \boldsymbol{u})=\min _{t \in X}(\operatorname{dist}(\boldsymbol{s}, \boldsymbol{t})+\ell(\boldsymbol{t}, \boldsymbol{u}))\)
```

Correctness: By induction on \boldsymbol{i} using previous lemmas.
Running time:
$O(n \cdot(n+m))$ time.
(1) n outer iterations. In each iteration, $d^{\prime}(s, u)$ for each u by scanning all edges out
of nodes in $\boldsymbol{X} ; \boldsymbol{O}(\boldsymbol{m}+\boldsymbol{n})$ time/iteration.

Algorithm

```
Initialize for each node \(\boldsymbol{v}: \operatorname{dist}(\boldsymbol{s}, \boldsymbol{v})=\infty\)
Initialize \(\boldsymbol{X}=\emptyset, \boldsymbol{d}^{\prime}(\boldsymbol{s}, \boldsymbol{s})=\mathbf{0}\)
for \(\boldsymbol{i}=1\) to \(|\boldsymbol{V}|\) do
    (* Invariant: \(\boldsymbol{X}\) contains the \(\boldsymbol{i}-\mathbf{1}\) closest nodes to \(\boldsymbol{s}\) *)
    (* Invariant: \(\boldsymbol{d}^{\prime}(\boldsymbol{s}, \boldsymbol{u})\) is shortest path distance from \(\boldsymbol{u}\) to \(\boldsymbol{s}\)
        using only \(\boldsymbol{X}\) as intermediate nodes*)
    Let \(\boldsymbol{v}\) be such that \(\boldsymbol{d}^{\prime}(\boldsymbol{s}, \boldsymbol{v})=\min _{\boldsymbol{u} \in \boldsymbol{v}-\boldsymbol{x}} \boldsymbol{d}^{\prime}(\boldsymbol{s}, \boldsymbol{u})\)
    \(\operatorname{dist}(s, v)=d^{\prime}(s, v)\)
    \(\boldsymbol{X}=\boldsymbol{X} \cup\{v\}\)
    for each node \(\boldsymbol{u}\) in \(\boldsymbol{V}-\boldsymbol{X}\) do
    \(d^{\prime}(s, u)=\min _{t \in X}(\operatorname{dist}(s, t)+\ell(t, u))\)
```

Correctness: By induction on \boldsymbol{i} using previous lemmas.
Running time: $\boldsymbol{O}(\boldsymbol{n} \cdot(\boldsymbol{n}+\boldsymbol{m}))$ time.
(1) \boldsymbol{n} outer iterations. In each iteration, $\boldsymbol{d}^{\prime}(\boldsymbol{s}, \boldsymbol{u})$ for each \boldsymbol{u} by scanning all edges out of nodes in $\boldsymbol{X} ; \boldsymbol{O}(\boldsymbol{m}+\boldsymbol{n})$ time/iteration.

THE END

(for now)

