Algorithms & Models of Computation CS/ECE 374, Fall 2020

17.3.6 How to compute the *i*th closest vertex?

- X contains the i 1 closest nodes to s
- **2** Want to find the *i*th closest node from V X.
- For each u ∈ V − X let P(s, u, X) be a shortest path from s to u using only nodes in X as intermediate vertices.
- **②** Let d'(s, u) be the length of P(s, u, X)

Observations: for each $\boldsymbol{u} \in \boldsymbol{V} - \boldsymbol{X}$,

dist(s, u) ≤ d'(s, u) since we are constraining the paths
d'(s, u) = min_{t∈X}(dist(s, t) + ℓ(t, u)) - Why?

Lemma (d' has the right value for *i*th vertex) If v is the *i*th closest node to s, then d'(s, v) = dist(s, v).

- X contains the i 1 closest nodes to s
- **2** Want to find the *i*th closest node from V X.
- For each $u \in V X$ let P(s, u, X) be a shortest path from s to u using only nodes in X as intermediate vertices.
- **2** Let d'(s, u) be the length of P(s, u, X)
- Observations: for each $\boldsymbol{u} \in \boldsymbol{V} \boldsymbol{X}$,
 - dist $(s, u) \leq d'(s, u)$ since we are constraining the paths
 - $\ \textbf{\textit{0}} \ \ \textbf{\textit{d}}'(\textbf{\textit{s}},\textbf{\textit{u}}) = \min_{\textbf{\textit{t}} \in \textbf{\textit{X}}}(\operatorname{dist}(\textbf{\textit{s}},\textbf{\textit{t}}) + \ell(\textbf{\textit{t}},\textbf{\textit{u}})) \ \text{- Why?}$

Lemma (d' has the right value for *i*th vertex) If v is the *i*th closest node to s, then d'(s, v) = dist(s, v).

- X contains the i 1 closest nodes to s
- **2** Want to find the *i*th closest node from V X.
- For each $u \in V X$ let P(s, u, X) be a shortest path from s to u using only nodes in X as intermediate vertices.
- 2 Let d'(s, u) be the length of P(s, u, X)
- Observations: for each $\boldsymbol{u} \in \boldsymbol{V} \boldsymbol{X}$,
 - dist $(s, u) \leq d'(s, u)$ since we are constraining the paths
 - $\ \textbf{\textit{0}} \ \ \textbf{\textit{d}}'(\textbf{\textit{s}},\textbf{\textit{u}}) = \min_{\textbf{\textit{t}} \in \textbf{\textit{X}}}(\operatorname{dist}(\textbf{\textit{s}},\textbf{\textit{t}}) + \ell(\textbf{\textit{t}},\textbf{\textit{u}})) \ \text{- Why?}$

Lemma (d' has the right value for *i*th vertex) If v is the *i*th closest node to s, then d'(s, v) = dist(s, v).

Lemma (**d'** has the right value for **i**th vertex)

- X: Set of i 1 closest nodes to s.
- $d'(s, u) = \min_{t \in X} (\operatorname{dist}(s, t) + \ell(t, u))$

If \mathbf{v} is an *i*th closest node to \mathbf{s} , then $\mathbf{d}'(\mathbf{s}, \mathbf{v}) = \operatorname{dist}(\mathbf{s}, \mathbf{v})$.

Proof.

Let \mathbf{v} be the *i*th closest node to \mathbf{s} . Then there is a shortest path \mathbf{P} from \mathbf{s} to \mathbf{v} that contains only nodes in \mathbf{X} as intermediate nodes (see previous claim). Therefore $\mathbf{d'}(\mathbf{s}, \mathbf{v}) = \operatorname{dist}(\mathbf{s}, \mathbf{v})$.

Lemma (**d'** has the right value for **i**th vertex)

If \mathbf{v} is an *i*th closest node to \mathbf{s} , then $\mathbf{d}'(\mathbf{s}, \mathbf{v}) = \operatorname{dist}(\mathbf{s}, \mathbf{v})$.

Corollary

The *i*th closest node to *s* is the node $v \in V - X$ such that $d'(s, v) = \min_{u \in V - X} d'(s, u)$.

Proof.

For every node $u \in V - X$, $\operatorname{dist}(s, u) \leq d'(s, u)$ and for the *i*th closest node v, $\operatorname{dist}(s, v) = d'(s, v)$. Moreover, $\operatorname{dist}(s, u) \geq \operatorname{dist}(s, v)$ for each $u \in V - X$.

Initialize for each node \mathbf{v} : $\operatorname{dist}(\mathbf{s},\mathbf{v}) = \infty$ Initialize $X = \emptyset$, d'(s, s) = 0for i = 1 to |V| do (* Invariant: **X** contains the i-1 closest nodes to s *) (* Invariant: d'(s, u) is shortest path distance from u to susing only **X** as intermediate nodes*) Let v be such that $d'(s, v) = \min_{u \in V-X} d'(s, u)$ $\operatorname{dist}(\boldsymbol{s}, \boldsymbol{v}) = \boldsymbol{d}'(\boldsymbol{s}, \boldsymbol{v})$ $X = X \cup \{v\}$ for each node u in V - X do $d'(s, u) = \min_{t \in X} (\operatorname{dist}(s, t) + \ell(t, u))$

Correctness: By induction on *i* using previous lemmas. Running time: $O(n \cdot (n + m))$ time.

In outer iterations. In each iteration, d'(s, u) for each u by scanning all edges out of nodes in X; O(m + n) time/iteration.

Initialize for each node \mathbf{v} : $\operatorname{dist}(\mathbf{s},\mathbf{v}) = \infty$ Initialize $X = \emptyset$, d'(s, s) = 0for i = 1 to |V| do (* Invariant: **X** contains the i-1 closest nodes to s *) (* Invariant: d'(s, u) is shortest path distance from u to susing only **X** as intermediate nodes*) Let v be such that $d'(s, v) = \min_{u \in V-X} d'(s, u)$ $\operatorname{dist}(\boldsymbol{s}, \boldsymbol{v}) = \boldsymbol{d}'(\boldsymbol{s}, \boldsymbol{v})$ $X = X \cup \{v\}$ for each node u in V - X do $d'(s, u) = \min_{t \in X} (\operatorname{dist}(s, t) + \ell(t, u))$

Correctness: By induction on i using previous lemmas.

• *n* outer iterations. In each iteration, d'(s, u) for each *u* by scanning all edges out of nodes in *X*; O(m + n) time/iteration.

Initialize for each node \mathbf{v} : $\operatorname{dist}(\mathbf{s},\mathbf{v}) = \infty$ Initialize $X = \emptyset$, d'(s, s) = 0for i = 1 to |V| do (* Invariant: **X** contains the i-1 closest nodes to s *) (* Invariant: d'(s, u) is shortest path distance from u to susing only **X** as intermediate nodes*) Let v be such that $d'(s, v) = \min_{u \in V-X} d'(s, u)$ $\operatorname{dist}(\boldsymbol{s}, \boldsymbol{v}) = \boldsymbol{d}'(\boldsymbol{s}, \boldsymbol{v})$ $X = X \cup \{v\}$ for each node u in V - X do $d'(s, u) = \min_{t \in X} \left(\operatorname{dist}(s, t) + \ell(t, u) \right)$

Correctness: By induction on *i* using previous lemmas. Running time: $O(n \cdot (n + m))$ time.

n outer iterations. In each iteration, *d'(s, u)* for each *u* by scanning all edges out of nodes in *X*; *O(m + n)* time/iteration.

Initialize for each node \mathbf{v} : dist $(\mathbf{s}, \mathbf{v}) = \infty$ Initialize $X = \emptyset$, d'(s, s) = 0for i = 1 to |V| do (* Invariant: **X** contains the i-1 closest nodes to s *) (* Invariant: d'(s, u) is shortest path distance from u to susing only **X** as intermediate nodes*) Let v be such that $d'(s, v) = \min_{u \in V-X} d'(s, u)$ $\operatorname{dist}(\boldsymbol{s}, \boldsymbol{v}) = \boldsymbol{d'}(\boldsymbol{s}, \boldsymbol{v})$ $X = X \cup \{v\}$ for each node u in V - X do $d'(s, u) = \min_{t \in X} \left(\operatorname{dist}(s, t) + \ell(t, u) \right)$

Correctness: By induction on *i* using previous lemmas. Running time: $O(n \cdot (n + m))$ time.

• *n* outer iterations. In each iteration, d'(s, u) for each *u* by scanning all edges out of nodes in *X*; O(m + n) time/iteration.

THE END

(for now)

. . .