Algorithms \& Models of Computation CS/ECE 374, Fall 2020
 17.3.3
 Shortest path in the weighted case using BFS

Single-Source Shortest Paths via BFS

(3) Special case: All edge lengths are 1 .
(1) Run BFS (s) to get shortest path distances from s to all other nodes.
(2) $\mathbf{O}(\boldsymbol{m}+\boldsymbol{n})$ time algorithm
(a) Special case: Suppose $\boldsymbol{L}(\boldsymbol{e})$ is an integer for all e?

Can we use BFS? Reduce to unit edge-length problem by placing $\ell(e)-1$ dummy nodes on \boldsymbol{e}

Single-Source Shortest Paths via BFS

(1) Special case: All edge lengths are 1.
(1) Run $\operatorname{BFS}(s)$ to get shortest path distances from s to all other nodes.
(2) $\boldsymbol{O}(\boldsymbol{m}+\boldsymbol{n})$ time algorithm.
(3) Special case: Suppose $\ell(e)$ is an integer for all e ? Can we use BFS? Reduce to unit edge-length problem by placing $\ell(\boldsymbol{e})-\mathbf{1}$ dummy nodes on \boldsymbol{e}

Single-Source Shortest Paths via BFS

(1) Special case: All edge lengths are 1.
(1) Run BFS(s) to get shortest path distances from s to all other nodes.
(2) $\boldsymbol{O}(\boldsymbol{m}+\boldsymbol{n})$ time algorithm.
(2) Special case: Suppose $\ell(\boldsymbol{e})$ is an integer for all \boldsymbol{e} ?

Can we use BFS? Reduce to unit edge-length problem by placing $\ell(e)-1$ dummy nodes on e

Single-Source Shortest Paths via BFS

(1) Special case: All edge lengths are 1.
(1) Run BFS(s) to get shortest path distances from s to all other nodes.
(2) $\boldsymbol{O}(\boldsymbol{m}+\boldsymbol{n})$ time algorithm.
(2) Special case: Suppose $\ell(\boldsymbol{e})$ is an integer for all \boldsymbol{e} ?

Can we use BFS? Reduce to unit edge-length problem by placing $\ell(\boldsymbol{e})-\mathbf{1}$ dummy nodes on \boldsymbol{e}.

Example of edge refinement

Example of edge refinement

Example of edge refinement

Shortest path using BFS

Let $\boldsymbol{L}=\max _{\boldsymbol{e}} \ell(\boldsymbol{e})$. New graph has $\boldsymbol{O}(\boldsymbol{m L})$ edges and $\boldsymbol{O}(\boldsymbol{m} \boldsymbol{L}+\boldsymbol{n})$ nodes. BFS takes $\boldsymbol{O}(\boldsymbol{m} \boldsymbol{L}+\boldsymbol{n})$ time. Not efficient if \boldsymbol{L} is large.

Why does BFS kind of works?

Why does BFS work?
BFS(s) explores nodes in increasing distance from s

Why does BFS kind of works?

Why does BFS work?
BFS(s) explores nodes in increasing distance from s

THE END

(for now)

