
Algorithms & Models of Computation
CS/ECE 374, Fall 2020

17.2.1
BFS with distances and layers
FLNAME:17.2.1.0 ZZZ:17.2.1.0 BFS with distances and layers

14 / 76

BFS with distances
BFS(s)

Mark all vertices as unvisited; for each v set dist(v) =∞
Initialize search tree T to be empty
Mark vertex s as visited and set dist(s) = 0
set Q to be the empty queue
enqueue(s)
while Q is nonempty do

u = dequeue(Q)
for each vertex v ∈ Adj(u) do

if v is not visited do
add edge (u, v) to T
Mark v as visited, enqueue(v)
and set dist(v) = dist(u) + 1

15 / 76

Properties of BFS: Undirected Graphs
Theorem
The following properties hold upon termination of BFS(s)

(A) Search tree contains exactly the set of vertices in the connected component of s.
(B) If dist(u) < dist(v) then u is visited before v .
(C) For every vertex u, dist(u) is the length of a shortest path (in terms of number of

edges) from s to u.
(D) If u, v are in connected component of s and e = {u, v} is an edge of G, then
|dist(u)− dist(v)| ≤ 1.

16 / 76

Properties of BFS: Directed Graphs
Theorem
The following properties hold upon termination of BFS(s):

(A) The search tree contains exactly the set of vertices reachable from s
(B) If dist(u) < dist(v) then u is visited before v
(C) For every vertex u, dist(u) is indeed the length of shortest path from s to u
(D) If u is reachable from s and e = (u, v) is an edge of G, then

dist(v)− dist(u) ≤ 1.
Not necessarily the case that dist(u)− dist(v) ≤ 1.

17 / 76

BFS with Layers
BFSLayers(s):

Mark all vertices as unvisited and initialize T to be empty
Mark s as visited and set L0 = {s}
i = 0
while Li is not empty do

initialize Li+1 to be an empty list
for each u in Li do

for each edge (u, v) ∈ Adj(u) do
if v is not visited

mark v as visited
add (u, v) to tree T
add v to Li+1

i = i + 1

Running time: O(n + m)

18 / 76

BFS with Layers
BFSLayers(s):

Mark all vertices as unvisited and initialize T to be empty
Mark s as visited and set L0 = {s}
i = 0
while Li is not empty do

initialize Li+1 to be an empty list
for each u in Li do

for each edge (u, v) ∈ Adj(u) do
if v is not visited

mark v as visited
add (u, v) to tree T
add v to Li+1

i = i + 1

Running time: O(n + m)

18 / 76

Example
1

2 3

4 5

6

7

8

19 / 76

BFS with Layers: Properties
Proposition
The following properties hold on termination of BFSLayers(s).

1 BFSLayers(s) outputs a BFS tree
2 Li is the set of vertices at distance exactly i from s
3 If G is undirected, each edge e = {u, v} is one of three types:

1 tree edge between two consecutive layers
2 non-tree forward/backward edge between two consecutive layers
3 non-tree cross-edge with both u, v in same layer
4 =⇒ Every edge in the graph is either between two vertices that are either (i) in

the same layer, or (ii) in two consecutive layers.

20 / 76

Example

Basic Graph Theory
Breadth First search
Depth First Search

Directed Graphs

Digraphs and Connectivity
Digraph Representation
Searching

Directed Graphs

AB C

DE F

G H

Definition

A directed graph (also called a digraph) is G = (V ,E), where

V is a set of vertices or nodes

E ⊆ V × V is set of ordered pairs of vertices called edges

Viswanathan CS473ug

21 / 76

BFS with Layers: Properties
For directed graphs

Proposition
The following properties hold on termination of BFSLayers(s), if G is directed.
For each edge e = (u, v) is one of four types:

1 a tree edge between consecutive layers, u ∈ Li , v ∈ Li+1 for some i ≥ 0
2 a non-tree forward edge between consecutive layers
3 a non-tree backward edge
4 a cross-edge with both u, v in same layer

22 / 76

THE END
...

(for now)

23 / 76

