Algorithms & Models of Computation CS/ECE 374, Fall 2020

17.2.1 BFS with distances and layers

BFS with distances

```
BFS(s)
Mark all vertices as unvisited; for each v set dist(v) = \infty
Initialize search tree T to be empty
Mark vertex s as visited and set dist(s) = 0
set Q to be the empty queue
enqueue(s)
while Q is nonempty do
     \boldsymbol{u} = \text{dequeue}(\boldsymbol{Q})
     for each vertex v \in \operatorname{Adj}(u) do
          if v is not visited do
              add edge (u, v) to T
               Mark v as visited, enqueue(v)
               and set dist(v) = dist(u) + 1
```

Properties of BFS: Undirected Graphs

Theorem

The following properties hold upon termination of BFS(s)

- Search tree contains exactly the set of vertices in the connected component of **s**.
- If dist(u) < dist(v) then u is visited before v.
- For every vertex u, dist(u) is the length of a shortest path (in terms of number of edges) from s to u.
- **(a)** If u, v are in connected component of s and $e = \{u, v\}$ is an edge of G, then $|\operatorname{dist}(u) \operatorname{dist}(v)| \leq 1$.

Properties of BFS: Directed Graphs

Theorem

The following properties hold upon termination of **BFS**(*s*):

- The search tree contains exactly the set of vertices reachable from s
- If dist(u) < dist(v) then u is visited before v
- If \mathbf{G} For every vertex \mathbf{u} , $\operatorname{dist}(\mathbf{u})$ is indeed the length of shortest path from \mathbf{s} to \mathbf{u}
- If u is reachable from s and e = (u, v) is an edge of G, then $dist(v) - dist(u) \le 1$. Not necessarily the case that $dist(u) - dist(v) \le 1$.

BFS with Layers

```
BFSLayers(s):
 Mark all vertices as unvisited and initialize T to be empty
 Mark s as visited and set L_0 = \{s\}
 i = 0
while L<sub>i</sub> is not empty do
           initialize L_{i+1} to be an empty list
           for each u in L_i do
                for each edge (u, v) \in \operatorname{Adj}(u) do
                if v is not visited
                          mark v as visited
                           add (\boldsymbol{u}, \boldsymbol{v}) to tree \boldsymbol{T}
                          add v to L_{i+1}
           i = i + 1
```

Running time: O(n + m)

BFS with Layers

```
BFSLayers(s):
 Mark all vertices as unvisited and initialize T to be empty
 Mark s as visited and set L_0 = \{s\}
 i = 0
while L<sub>i</sub> is not empty do
           initialize L_{i+1} to be an empty list
           for each u in L_i do
                for each edge (u, v) \in \operatorname{Adj}(u) do
                if v is not visited
                          mark v as visited
                           add (\boldsymbol{u}, \boldsymbol{v}) to tree \boldsymbol{T}
                          add v to L_{i+1}
           i = i + 1
```

Running time: O(n + m)

Example

BFS with Layers: Properties

Proposition

The following properties hold on termination of BFSLayers(s).

- **BFSLayers**(*s*) outputs a **BFS** tree
- **2** L_i is the set of vertices at distance exactly **i** from **s**
- **(3)** If **G** is undirected, each edge $e = \{u, v\}$ is one of three types:
 - tree edge between two consecutive layers
 - on-tree forward/backward edge between two consecutive layers
 - onon-tree cross-edge with both u, v in same layer
 - Every edge in the graph is either between two vertices that are either (i) in the same layer, or (ii) in two consecutive layers.

BFS with Layers: Properties

For directed graphs

Proposition

The following properties hold on termination of BFSLayers(s), if **G** is directed. For each edge e = (u, v) is one of four types:

- **(**) a <u>tree</u> edge between consecutive layers, $u \in L_i$, $v \in L_{i+1}$ for some $i \ge 0$
- a non-tree forward edge between consecutive layers
- a non-tree backward edge
- a cross-edge with both u, v in same layer

THE END

(for now)

. . .