Algorithms \& Models of Computation

CS/ECE 374, Fall 2020

17.2.1

BFS with distances and layers

BFS with distances

```
BFS(s)
    Mark all vertices as unvisited; for each v set dist(v)=\infty
    Initialize search tree T to be empty
    Mark vertex s as visited and set dist(s)=0
    set Q to be the empty queue
    enqueue(s)
    while Q is nonempty do
        u}=\mathrm{ dequeue( }\boldsymbol{Q}
        for each vertex v \in Adj(u) do
            if v}\mathrm{ is not visited do
                add edge (u,v) to T
                Mark v as visited, enqueue(v)
                and set dist(v)=\operatorname{dist}(\boldsymbol{u})+1
```


Properties of BFS: Undirected Graphs

Theorem

The following properties hold upon termination of BFS(s)
(0) Search tree contains exactly the set of vertices in the connected component of \boldsymbol{s}.
(8) If $\operatorname{dist}(\boldsymbol{u})<\operatorname{dist}(\boldsymbol{v})$ then \boldsymbol{u} is visited before \boldsymbol{v}.
(0) For every vertex $\boldsymbol{u}, \operatorname{dist}(\boldsymbol{u})$ is the length of a shortest path (in terms of number of edges) from \boldsymbol{s} to \boldsymbol{u}.
(0) If $\boldsymbol{u}, \boldsymbol{v}$ are in connected component of \boldsymbol{s} and $\boldsymbol{e}=\{\boldsymbol{u}, \boldsymbol{v}\}$ is an edge of \boldsymbol{G}, then $|\operatorname{dist}(u)-\operatorname{dist}(v)| \leq 1$.

Properties of BFS: Directed Graphs

Theorem

The following properties hold upon termination of BFS(s):
(A) The search tree contains exactly the set of vertices reachable from \mathbf{s}
(B) If $\operatorname{dist}(\boldsymbol{u})<\operatorname{dist}(\boldsymbol{v})$ then \boldsymbol{u} is visited before \boldsymbol{v}
(0) For every vertex $\boldsymbol{u}, \operatorname{dist}(\boldsymbol{u})$ is indeed the length of shortest path from \boldsymbol{s} to \boldsymbol{u}
(D) If \boldsymbol{u} is reachable from \boldsymbol{s} and $\mathbf{e}=(\boldsymbol{u}, \boldsymbol{v})$ is an edge of \mathbf{G}, then $\operatorname{dist}(v)-\operatorname{dist}(u) \leq 1$.
Not necessarily the case that $\operatorname{dist}(\boldsymbol{u})-\operatorname{dist}(\boldsymbol{v}) \leq \mathbf{1}$.

BFS with Layers

```
BFSLayers(s):
    Mark all vertices as unvisited and initialize T to be empty
    Mark s as visited and set }\mp@subsup{L}{0}{}={s
    i=0
    while }\mp@subsup{L}{i}{}\mathrm{ is not empty do
        initialize Li+1 to be an empty list
        for each }\boldsymbol{u}\mathrm{ in }\mp@subsup{L}{i}{}\mathrm{ do
            for each edge (u,v) \in Adj(u) do
            if v is not visited
                        mark v as visited
                        add (u,v) to tree T
                        add v to }\mp@subsup{\boldsymbol{L}}{\boldsymbol{i}+\boldsymbol{1}}{
    i=i}+\mathbf{1
```


BFS with Layers

```
BFSLayers(s) :
    Mark all vertices as unvisited and initialize T to be empty
    Mark s as visited and set }\mp@subsup{L}{0}{}={s
    i=0
    while }\mp@subsup{L}{i}{}\mathrm{ is not empty do
        initialize L}\mp@subsup{L}{i+1}{
        for each u}\mathrm{ in }\mp@subsup{L}{i}{}\mathrm{ do
            for each edge (u,v) \in Adj(u) do
            if v is not visited
                        mark v as visited
                        add (u,v) to tree T
                                add v to }\mp@subsup{\boldsymbol{L}}{\boldsymbol{i}+\boldsymbol{1}}{
    i=i}+\mathbf{1
```

Running time: $\boldsymbol{O}(\boldsymbol{n}+\boldsymbol{m})$

Example

BFS with Layers: Properties

Proposition

The following properties hold on termination of BFSLayers(s).
(1) BFSLayers(s) outputs a BFS tree
(2) L_{i} is the set of vertices at distance exactly \boldsymbol{i} from \boldsymbol{s}
(3) If \boldsymbol{G} is undirected, each edge $\boldsymbol{e}=\{\boldsymbol{u}, \boldsymbol{v}\}$ is one of three types:
(1) tree edge between two consecutive layers
(2) non-tree forward/backward edge between two consecutive layers
(3) non-tree cross-edge with both $\boldsymbol{u}, \boldsymbol{v}$ in same layer
(1) \Rightarrow Every edge in the graph is either between two vertices that are either (i) in the same layer, or (ii) in two consecutive layers.

Example

BFS with Layers: Properties

For directed graphs

Proposition

The following properties hold on termination of BFSLayers(s), if \boldsymbol{G} is directed. For each edge $\boldsymbol{e}=(\boldsymbol{u}, \boldsymbol{v})$ is one of four types:
(1) a tree edge between consecutive layers, $\boldsymbol{u} \in \boldsymbol{L}_{\boldsymbol{i}}, \boldsymbol{v} \in \boldsymbol{L}_{\boldsymbol{i}+\boldsymbol{1}}$ for some $\boldsymbol{i} \geq \mathbf{0}$
(2) a non-tree forward edge between consecutive layers
(3) a non-tree backward edge
(9) a cross-edge with both $\boldsymbol{u}, \boldsymbol{v}$ in same layer

THE END

(for now)

