Algorithms & Models of Computation CS/ECE 374, Fall 2020

16.5

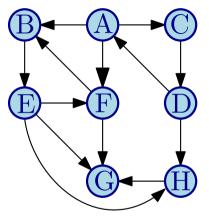
The meta graph of strong connected components

Strong Connected Components (SCCs)

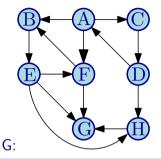
Algorithmic Problem

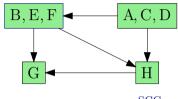
Find all SCCs of a given directed graph.

Previous lecture: Saw an $O(n \cdot (n + m))$ time algorithm. This lecture: sketch of a O(n + m) time algorithm.



Graph of SCCs





Graph of SCCs G^{SCC}

Meta-graph of SCCs

Let $S_1, S_2, \ldots S_k$ be the strong connected components (i.e., SCCs) of G. The graph of SCCs is G^{SCC}

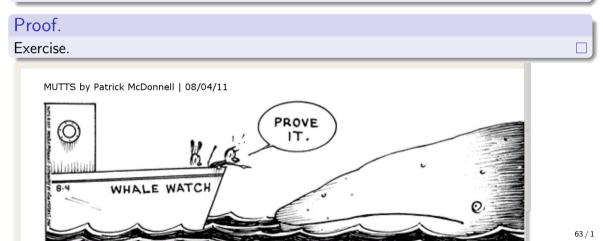
• Vertices are $S_1, S_2, \ldots S_k$

② There is an edge (S_i, S_j) if there is some u ∈ S_i and v ∈ S_j such that (u, v) is an edge in G.

Reversal and SCCs

Proposition

For any graph G, the graph of SCCs of G^{rev} is the same as the reversal of G^{SCC} .



The meta graph of SCCs is a DAG ...

Proposition

For any graph G, the graph G^{SCC} has no directed cycle.

Proof.

If G^{SCC} has a cycle S_1, S_2, \ldots, S_k then $S_1 \cup S_2 \cup \cdots \cup S_k$ should be in the same SCC in G. Formal details: exercise.

To Remember: Structure of Graphs

Undirected graph: connected components of G = (V, E) partition V and can be computed in O(m + n) time.

Directed graph: the meta-graph G^{SCC} of *G* can be computed in O(m + n) time. G^{SCC} gives information on the partition of *V* into strong connected components and how they form a DAG structure.

Above structural decomposition will be useful in several algorithms

THE END

(for now)

. . .