Algorithms & Models of Computation CS/ECE 374, Fall 2020

16.2 Directed Acyclic Graphs

Algorithms & Models of Computation CS/ECE 374, Fall 2020

16.2.1 DAGs definition and basic properties

DAG

Directed Acyclic Graphs

Definition

A directed graph G is a directed acyclic graph (DAG) if there is no directed cycle in G.

Is this a DAG?

Sources and Sinks

Definition

A vertex u is a source if it has no in-coming edges.

A vertex u is a sink if it has no out-going edges.

Simple DAG Properties

Proposition

Every DAG G has at least one source and at least one sink.

Proof.

Let $P = v_1, v_2, \ldots, v_k$ be a longest path in G. Claim that v_1 is a source and v_k is a sink. Suppose not. Then v_1 has an incoming edge which either creates a cycle or a longer path both of which are contradictions. Similarly if v_k has an outgoing edge.

Simple DAG Properties

Proposition

Every DAG G has at least one source and at least one sink.

Proof.

Let $P = v_1, v_2, \ldots, v_k$ be a longest path in G. Claim that v_1 is a source and v_k is a sink. Suppose not. Then v_1 has an incoming edge which either creates a cycle or a longer path both of which are contradictions. Similarly if v_k has an outgoing edge.

DAG properties

- **②** G is a DAG if and only each node is in its own strong connected component. Formal proofs: exercise.

THE END

(for now)

. . .