Algorithms \& Models of Computation

CS/ECE 374, Fall 2020

15.4.2

Graph exploration in directed graphs

Basic Graph Search in Directed Graphs

Given $\boldsymbol{G}=(\boldsymbol{V}, \boldsymbol{E})$ a directed graph and vertex $\boldsymbol{u} \in \boldsymbol{V}$. Let $\boldsymbol{n}=|\boldsymbol{V}|$.

```
Explore(G,u):
    array Visited[1..n]
```



```
    List: ToExplore, S
    Add u}\mathrm{ to ToExplore and to S, Visited [u]}\leftarrowTRU
    Make tree T with root as u
    while (ToExplore is non-empty) do
        Remove node x from ToExplore
        for each edge (x,y) in Adj(x) do
        if (Visited[y] = FALSE)
            Visited[y]}\leftarrow TRU
            Add y to ToExplore
            Add y to S
            Add y to }\boldsymbol{T}\mathrm{ with edge (x,y)
    Output S
```

Example

Properties of Basic Search

Proposition

Explore (G, u) terminates with $S=\operatorname{rch}(\boldsymbol{u})$.

Proof Sketch.

- Once Visited[i] is set to TRUE it never changes. Hence a node is added only once to ToExplore. Thus algorithm terminates in at most \boldsymbol{n} iterations of while loop.
- By induction on iterations, can show $v \in S \Rightarrow v \in \operatorname{rch}(u)$
- Since each node $v \in S$ was in ToExplore and was explored, no edges in G leave \boldsymbol{S}. Hence no node in $\boldsymbol{V}-\boldsymbol{S}$ is in $\operatorname{rch}(\boldsymbol{u})$. Caveat: In directed graphs edges can enter S.
- Thus $S=\operatorname{rch}(\boldsymbol{u})$ at termination.

Properties of Basic Search

Proposition
 Explore $(\boldsymbol{G}, \boldsymbol{u})$ terminates in $\mathbf{O}(\boldsymbol{m}+\boldsymbol{n})$ time.

Proposition

\boldsymbol{T} is a search tree rooted at \boldsymbol{u} containing S with edges directed away from root to leaves.

Proof: easy exercises
BFS and DFS are special case of Basic Search.
(1) Breadth First Search (BFS): use queue data structure to implementing the list ToExplore
(2) Depth First Search (DFS): use stack data structure to implement the list ToExplore

Exercise

Prove the following:

Proposition

Let $S=\operatorname{rch}(u)$. There is no edge $(x, y) \in E$ where $x \in S$ and $y \notin S$.
Describe an example where $\operatorname{rch}(\boldsymbol{u}) \neq \boldsymbol{V}$ and there are edges from $\boldsymbol{V} \backslash \boldsymbol{r c h}(\boldsymbol{u})$ to $\operatorname{rch}(u)$.

Directed Graph Connectivity Problems

(1) Given G and nodes \boldsymbol{u} and \boldsymbol{v}, can \boldsymbol{u} reach \boldsymbol{v} ?
(2) Given G and \boldsymbol{u}, compute $\operatorname{rch}(\boldsymbol{u})$.
(0) Given G and \boldsymbol{u}, compute all \boldsymbol{v} that can reach \boldsymbol{u}, that is all \boldsymbol{v} such that $u \in \operatorname{rch}(v)$.
(0) Find the strongly connected component containing node \boldsymbol{u}, that is $\operatorname{SCC}(\boldsymbol{u})$.

- Is G strongly connected (a single strong component)?
- Compute all strongly connected components of G.
\square
First five problems can be solved in $O(n+m)$ time by via Basic Search (or BFS/DFS). The last one can also be done in linear time but requires a rather clever DFS based algorithm.

Directed Graph Connectivity Problems

(1) Given G and nodes \boldsymbol{u} and \boldsymbol{v}, can \boldsymbol{u} reach \boldsymbol{v} ?
(2) Given G and \boldsymbol{u}, compute $\operatorname{rch}(\boldsymbol{u})$.
(0) Given G and \boldsymbol{u}, compute all \boldsymbol{v} that can reach \boldsymbol{u}, that is all \boldsymbol{v} such that $u \in \operatorname{rch}(v)$.
(0) Find the strongly connected component containing node \boldsymbol{u}, that is $\operatorname{SCC}(\boldsymbol{u})$.

- Is G strongly connected (a single strong component)?
- Compute all strongly connected components of G.

First five problems can be solved in $\boldsymbol{O}(\boldsymbol{n}+\boldsymbol{m})$ time by via Basic Search (or BFS/DFS). The last one can also be done in linear time but requires a rather clever DFS based algorithm.

THE END

(for now)

