Algorithms & Models of Computation CS/ECE 374, Fall 2020

15.4.1 Strong connected components

Definition

Given a directed graph G, u is strongly connected to v if u can reach v and v can reach u. In other words $v \in rch(u)$ and $u \in rch(v)$.

Define relation C where uCv if u is (strongly) connected to v.

Proposition

C is an equivalence relation, that is reflexive, symmetric and transitive.

Equivalence classes of C: strong connected components of G. They partition the vertices of G. SCC(u): strongly connected component containing u.

Definition

Given a directed graph G, u is strongly connected to v if u can reach v and v can reach u. In other words $v \in rch(u)$ and $u \in rch(v)$.

Define relation C where uCv if u is (strongly) connected to v.

Proposition

C is an equivalence relation, that is reflexive, symmetric and transitive.

Equivalence classes of C: strong connected components of C. They partition the vertices of G. SCC(u): strongly connected component containing u.

Definition

Given a directed graph G, u is strongly connected to v if u can reach v and v can reach u. In other words $v \in rch(u)$ and $u \in rch(v)$.

Define relation C where uCv if u is (strongly) connected to v.

Proposition

C is an equivalence relation, that is reflexive, symmetric and transitive.

Equivalence classes of C: strong connected components of G. They partition the vertices of G. SCC(u): strongly connected component containing u.

Definition

Given a directed graph G, u is strongly connected to v if u can reach v and v can reach u. In other words $v \in rch(u)$ and $u \in rch(v)$.

Define relation C where uCv if u is (strongly) connected to v.

Proposition

C is an equivalence relation, that is reflexive, symmetric and transitive.

Equivalence classes of C: <u>strong connected components</u> of G. They <u>partition</u> the vertices of G. SCC(u): strongly connected component containing u.

Directed Graph Connectivity Problems

- Given **G** and nodes **u** and **v**, can **u** reach **v**?
- **2** Given **G** and **u**, compute rch(u).
- 3 Given G and u, compute all v that can reach u, that is all v such that $u \in \operatorname{rch}(v)$.
- Find the strongly connected component containing node u, that is SCC(u).
- **o** Is **G** strongly connected (a single strong component)?
- Compute all strongly connected components of G.

THE END

(for now)

. . .