Algorithms \& Models of Computation

CS/ECE 374, Fall 2020

15.2

Connectivity

Connectivity

Given a graph $G=(\boldsymbol{V}, \boldsymbol{E})$:
(1) path: sequence of distinct vertices $v_{1}, v_{2}, \ldots, v_{k}$ such that $v_{i} v_{i+1} \in E$ for $1 \leq i \leq k-1$. The length of the path is $k-1$ (the number of edges in the path) and the path is from \boldsymbol{v}_{1} to $\boldsymbol{v}_{\boldsymbol{k}}$. Note: a single vertex \boldsymbol{u} is a path of length 0 . cycle: sequence of distinct vertices $v_{1}, v_{2}, \ldots, v_{k}$ such that $\left\{v_{i}, v_{i+1}\right\} \in E$ for
$1<i \leq k-1$ and $\left\{v_{1}, v_{k}\right\} \in E$. Single vertex not a cycle according to this definition.
Caveat: Some times people use the term cycle to also allow vertices to be repeated; we will use the term tour
(3) A vertex \boldsymbol{u} is connected to \boldsymbol{v} if there is a path from \boldsymbol{u} to \boldsymbol{v}
a The connected component of $\boldsymbol{u}, \operatorname{con}(u)$, is the set of all vertices connected to u Is $u \in \operatorname{con}(u)$?

Connectivity

Given a graph $G=(V, E)$:
(1) path: sequence of distinct vertices $v_{1}, v_{2}, \ldots, v_{k}$ such that $v_{i} v_{i+1} \in E$ for $1 \leq i \leq k-1$. The length of the path is $k-1$ (the number of edges in the path) and the path is from \boldsymbol{v}_{1} to $\boldsymbol{v}_{\boldsymbol{k}}$. Note: a single vertex \boldsymbol{u} is a path of length 0 .
(2) cycle: sequence of distinct vertices $v_{1}, v_{2}, \ldots, v_{k}$ such that $\left\{v_{i}, v_{i+1}\right\} \in E$ for $1 \leq i \leq k-1$ and $\left\{v_{1}, v_{k}\right\} \in E$. Single vertex not a cycle according to this definition.
Caveat: Some times people use the term cycle to also allow vertices to be repeated; we will use the term tour.
© A vertex u is connected to v if there is a path from u to v.

- The connected component of $u, \operatorname{con}(\boldsymbol{u})$, is the set of all vertices connected to u. Is $u \in \operatorname{con}(u)$?

Connectivity

Given a graph $G=(V, E)$:
(1) path: sequence of distinct vertices $v_{1}, v_{2}, \ldots, v_{k}$ such that $v_{i} v_{i+1} \in E$ for $1 \leq i \leq k-1$. The length of the path is $k-1$ (the number of edges in the path) and the path is from \boldsymbol{v}_{1} to $\boldsymbol{v}_{\boldsymbol{k}}$. Note: a single vertex \boldsymbol{u} is a path of length 0 .
(2) cycle: sequence of distinct vertices $v_{1}, v_{2}, \ldots, v_{k}$ such that $\left\{v_{i}, v_{i+1}\right\} \in E$ for $1 \leq i \leq k-1$ and $\left\{v_{1}, v_{k}\right\} \in E$. Single vertex not a cycle according to this definition.
Caveat: Some times people use the term cycle to also allow vertices to be repeated; we will use the term tour.
(3) A vertex \boldsymbol{u} is connected to \boldsymbol{v} if there is a path from \boldsymbol{u} to \boldsymbol{v}.

- The connected component of $u, \operatorname{con}(u)$, is the set of all vertices connected to u Is $u \in \operatorname{con}(u)$?

Connectivity

Given a graph $G=(V, E)$:
(1) path: sequence of distinct vertices $v_{1}, v_{2}, \ldots, v_{k}$ such that $v_{i} v_{i+1} \in E$ for $1 \leq i \leq k-1$. The length of the path is $k-1$ (the number of edges in the path) and the path is from \boldsymbol{v}_{1} to $\boldsymbol{v}_{\boldsymbol{k}}$. Note: a single vertex \boldsymbol{u} is a path of length 0 .
(2) cycle: sequence of distinct vertices $v_{1}, v_{2}, \ldots, v_{k}$ such that $\left\{v_{i}, v_{i+1}\right\} \in E$ for $1 \leq i \leq k-1$ and $\left\{v_{1}, v_{k}\right\} \in E$. Single vertex not a cycle according to this definition.
Caveat: Some times people use the term cycle to also allow vertices to be repeated; we will use the term tour.
(0) A vertex \boldsymbol{u} is connected to \boldsymbol{v} if there is a path from \boldsymbol{u} to \boldsymbol{v}.
(- The connected component of $\boldsymbol{u}, \operatorname{con}(\boldsymbol{u})$, is the set of all vertices connected to \boldsymbol{u}. Is $\boldsymbol{u} \in \operatorname{con}(\boldsymbol{u})$?

Connectivity contd

Define a relation C on $\boldsymbol{V} \times \boldsymbol{V}$ as $\boldsymbol{u} C \boldsymbol{v}$ if \boldsymbol{u} is connected to v
(1) In undirected graphs, connectivity is a reflexive, symmetric, and transitive relation. Connected components are the equivalence classes.
(2) Graph is connected if there is only one
 connected component.

Connectivity Problems

Algorithmic Problems

(1) Given graph G and nodes u and v, is u connected to v ?
(2) Given \boldsymbol{G} and node \boldsymbol{u}, find all nodes that are connected to \boldsymbol{u}.
© Find all connected components of G.

```
Can be accomplished in O(m+n) time using BFS or DFS
BFS and DFS are refinements of a basic search procedure which is good to understand
on its own.
```


Connectivity Problems

Algorithmic Problems

(1) Given graph \boldsymbol{G} and nodes \boldsymbol{u} and \boldsymbol{v}, is \boldsymbol{u} connected to \boldsymbol{v} ?
(2) Given \boldsymbol{G} and node \boldsymbol{u}, find all nodes that are connected to \boldsymbol{u}.
(Find all connected components of G.

Can be accomplished in $\boldsymbol{O}(\boldsymbol{m}+\boldsymbol{n})$ time using BFS or DFS.
BFS and DFS are refinements of a basic search procedure which is good to understand on its own.

THE END

(for now)

