Algorithms & Models of Computation CS/ECE 374, Fall 2020

15.2 Connectivity

Given a graph $\boldsymbol{G} = (\boldsymbol{V}, \boldsymbol{E})$:

- path: sequence of distinct vertices v_1, v_2, \ldots, v_k such that $v_i v_{i+1} \in E$ for $1 \leq i \leq k 1$. The length of the path is k 1 (the number of edges in the path) and the path is from v_1 to v_k . Note: a single vertex u is a path of length 0.
- cycle: sequence of distinct vertices v_1, v_2, \ldots, v_k such that $\{v_i, v_{i+1}\} \in E$ for $1 \leq i \leq k 1$ and $\{v_1, v_k\} \in E$. Single vertex not a cycle according to this definition.

- If u is connected to v if there is a path from u to v.
- The connected component of u, con(u), is the set of all vertices connected to u. ls u ∈ con(u)?

Given a graph $\boldsymbol{G} = (\boldsymbol{V}, \boldsymbol{E})$:

- path: sequence of distinct vertices v₁, v₂,..., v_k such that v_iv_{i+1} ∈ E for 1 ≤ i ≤ k 1. The length of the path is k 1 (the number of edges in the path) and the path is from v₁ to v_k. Note: a single vertex u is a path of length 0.
- cycle: sequence of distinct vertices v_1, v_2, \ldots, v_k such that $\{v_i, v_{i+1}\} \in E$ for $1 \leq i \leq k 1$ and $\{v_1, v_k\} \in E$. Single vertex not a cycle according to this definition.

- If there is a path from u to v.
- The connected component of u, con(u), is the set of all vertices connected to u. Is u ∈ con(u)?

Given a graph $\boldsymbol{G} = (\boldsymbol{V}, \boldsymbol{E})$:

- path: sequence of distinct vertices v₁, v₂,..., v_k such that v_iv_{i+1} ∈ E for 1 ≤ i ≤ k 1. The length of the path is k 1 (the number of edges in the path) and the path is from v₁ to v_k. Note: a single vertex u is a path of length 0.
- cycle: sequence of distinct vertices v_1, v_2, \ldots, v_k such that $\{v_i, v_{i+1}\} \in E$ for $1 \leq i \leq k 1$ and $\{v_1, v_k\} \in E$. Single vertex not a cycle according to this definition.

- A vertex u is connected to v if there is a path from u to v.
- The connected component of u, con(u), is the set of all vertices connected to u. Is u ∈ con(u)?

Given a graph $\boldsymbol{G} = (\boldsymbol{V}, \boldsymbol{E})$:

- path: sequence of distinct vertices v₁, v₂,..., v_k such that v_iv_{i+1} ∈ E for 1 ≤ i ≤ k 1. The length of the path is k 1 (the number of edges in the path) and the path is from v₁ to v_k. Note: a single vertex u is a path of length 0.
- cycle: sequence of distinct vertices v_1, v_2, \ldots, v_k such that $\{v_i, v_{i+1}\} \in E$ for $1 \leq i \leq k 1$ and $\{v_1, v_k\} \in E$. Single vertex not a cycle according to this definition.

- A vertex u is connected to v if there is a path from u to v.
- The connected component of u, con(u), is the set of all vertices connected to u. Is u ∈ con(u)?

Connectivity contd

Define a relation C on $V \times V$ as uCv if u is connected to v

- In undirected graphs, connectivity is a reflexive, symmetric, and transitive relation. Connected components are the equivalence classes.
- Graph is connected if there is only one connected component.

Connectivity Problems

Algorithmic Problems

- Given graph G and nodes u and v, is u connected to v?
- ② Given G and node u, find all nodes that are connected to u.
- **③** Find all connected components of G.

Can be accomplished in O(m + n) time using **BFS** or **DFS**.

BFS and **DFS** are refinements of a basic search procedure which is good to understand on its own.

Connectivity Problems

Algorithmic Problems

- Given graph G and nodes u and v, is u connected to v?
- 2 Given G and node u, find all nodes that are connected to u.
- **③** Find all connected components of G.

Can be accomplished in O(m + n) time using **BFS** or **DFS**. **BFS** and **DFS** are refinements of a basic search procedure which is good to understand on its own.

THE END

(for now)

. . .