Algorithms \& Models of Computation

CS/ECE 374, Fall 2020

15.1.1

Graph notation and represetation

Notation and Convention

Notation

An edge in an undirected graphs is an unordered pair of nodes and hence it is a set. Conventionally we use $\boldsymbol{u v}$ for $\{\boldsymbol{u}, \boldsymbol{v}\}$ when it is clear from the context that the graph is undirected.
(1) \boldsymbol{u} and \boldsymbol{v} are the end points of an edge $\{\boldsymbol{u}, \boldsymbol{v}\}$
(2) Multi-graphs allow
(1) loops which are edges with the same node appearing as both end points
(2) multi-edges: different edges between same pairs of nodes
(3) In this class we will assume that a graph is a simple graph unless explicitly stated otherwise.

Graph Representation I

Adjacency Matrix

Represent $\boldsymbol{G}=(\boldsymbol{V}, \boldsymbol{E})$ with \boldsymbol{n} vertices and \boldsymbol{m} edges using a $\boldsymbol{n} \times \boldsymbol{n}$ adjacency matrix \boldsymbol{A} where
(1) $A[i, j]=A[j, i]=1$ if $\{i, j\} \in E$ and $A[i, j]=A[j, i]=0$ if $\{i, j\} \notin E$.
(2) Advantage: can check if $\{i, j\} \in E$ in $O(1)$ time
(Disadvantage: needs $\Omega\left(\boldsymbol{n}^{2}\right)$ space even when $\boldsymbol{m} \ll \boldsymbol{n}^{2}$

Graph adjacency matrix example [10 vertices]

	1	2	3	4	5	6	7	8	9	10
1	0	0	1	1	0	0	0	0	1	0
2	0	0	0	0	0	0	1	1	0	1
3	1	0	0	0	1	1	1	0	0	0
4	1	0	0	0	0	1	0	0	0	1
5	0	0	1	0	0	1	0	1	1	0
6	0	0	1	1	1	0	1	0	0	0
7	0	1	1	0	0	1	0	0	0	1
8	0	1	0	0	1	0	0	0	1	0
9	1	0	0	0	1	0	0	1	0	0
10	0	1	0	1	0	0	1	0	0	0

Graph Representation II

Adjacency Lists

Represent $G=(\boldsymbol{V}, \boldsymbol{E})$ with \boldsymbol{n} vertices and \boldsymbol{m} edges using adjacency lists:
(1) For each $\boldsymbol{u} \in \boldsymbol{V}, \operatorname{Adj}(\boldsymbol{u})=\{\boldsymbol{v} \mid\{u, v\} \in E\}$, that is neighbors of \boldsymbol{u}. Sometimes $\operatorname{Adj}(\boldsymbol{u})$ is the list of edges incident to \boldsymbol{u}.
(2) Advantage: space is $\boldsymbol{O}(\boldsymbol{m}+\boldsymbol{n})$
(3) Disadvantage: cannot "easily" determine in $O(1)$ time whether $\{i, j\} \in E$
(1) By sorting each list, one can achieve $\boldsymbol{O}(\log \boldsymbol{n})$ time
(2) By hashing "appropriately", one can achieve $\boldsymbol{O}(1)$ time

Note: In this class we will assume that by default, graphs are represented using plain vanilla (unsorted) adjacency lists.

Graph adjacency list example [10 vertices]

vertex	adjacency list
1	$3,4,9$
2	$7,8,10$
3	$1,5,6,7$
4	$1,6,10$
5	$3,6,8,9$
6	$3,4,5,7$
7	$2,3,6,10$
8	$2,5,9$
9	$1,5,8$
10	$2,4,7$

Graph adjacency matrix+list example [10 vertices]

vertex	adjacency list
1	$3,4,9$
2	$7,8,10$
3	$1,5,6,7$
4	$1,6,10$
5	$3,6,8,9$
6	$3,4,5,7$
7	$2,3,6,10$
8	$2,5,9$
9	$1,5,8$
10	$2,4,7$

	1	2	3	4	5	6	7	8	9	10
1	0	0	1	1	0	0	0	0	1	0
2	0	0	0	0	0	0	1	1	0	1
3	1	0	0	0	1	1	1	0	0	0
4	1	0	0	0	0	1	0	0	0	1
5	0	0	1	0	0	1	0	1	1	0
6	0	0	1	1	1	0	1	0	0	0
7	0	1	1	0	0	1	0	0	0	1
8	0	1	0	0	1	0	0	0	1	0
9	1	0	0	0	1	0	0	1	0	0
10	0	1	0	1	0	0	1	0	0	0

Graph adjacency matrix example [20 vertices]

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	2
1	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0	
2	0	0	1	0	1	0	0	0	0	0	0	0	1	0	0	0	0	0	1	
3	0	1	0	0	1	0	0	0	0	0	0	0	0	0	1	0	0	0	1	
4	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1	1	0	
5	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	
6	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1	1	1	0	0	
7	1	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	0	0	0	
8	0	0	0	1	0	0	0	0	1	0	0	0	1	0	0	0	0	0	0	
9	0	0	0	0	0	1	0	1	0	0	0	1	0	0	0	0	0	0	1	
10	0	0	0	0	0	0	0	0	0	0	1	0	0	1	0	0	0	1	0	
11	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	0	1	0	1	
12	0	0	0	0	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	
13	0	1	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0	1	0	
14	1	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1	0	0	0	
15	0	0	1	0	0	1	0	0	0	0	1	0	0	0	0	0	1	0	0	
16	0	0	0	0	0	1	1	0	0	0	0	0	1	1	0	0	0	0	0	
17	0	0	0	1	0	1	0	0	0	0	1	0	0	0	1	0	0	0	0	
18	0	0	0	1	1	0	0	0	0	1	0	0	1	0	0	0	0	0	0	
19	0	1	1	0	0	0	0	0	1	0	1	0	0	0	0	0	0	0	0	
20	1	0	0	0	1	0	0	0	0	1	0	1	0	0	0	0	0	0	0	

Graph adjacency matrix example [40 vertices]

| | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 |
| :--- | 1 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 |
:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	0	3	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	1	0	0	0	0	0	0	0		
4	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1		4	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1
:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---																							
5	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	1	0		5	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	1	0
:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:																			
6	1	0	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0																														

 \begin{tabular}{l|lllllllllllllllllllllllllllllllllll}
\hline 8 \& 0 \& 0 \& 0 \& 1 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 1 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0

\hline

\hline 9 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 1 \& 0 \& 0 \& 0 \& 0 \& 0 \& 1 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 1

10 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 1 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 1 \& 0 \& 1 \& 0

\hline 1
\end{tabular}

 \begin{tabular}{c|ccccccccccccccccccccccccccccccccccc|c|c|c|c|}
\hline 13 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 1 \& 0 \& 0 \& 0 \& 1 \& 0 \& 1 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 1 \& 0 \& 0 \& 0

\hline 14 \& 0 \& 0 \& 1 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 1 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0

\hline

14 \& 0 \& 0 \& 1 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 1 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0

\hline 15 \& 0 \& 0 \& 1 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 1 \& 0 \& 1 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 1 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0

\hline
\end{tabular}

 \begin{tabular}{c|ccccccccccccccccccccccccccccccccccccc}
\hline 16 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 1 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 1 \& 0 \& 0 \& 1 \& 0 \& 0 \& 0 \& 0 \& 0

\hline 17 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 1 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 1 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0

17 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 1 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 1 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0

\hline 18 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 1 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0

\hline
\end{tabular}

 | 21 | 0 | 0 | 1 | 0 |
| :--- |

 \begin{tabular}{l|llllllllllllllllllllllllllllllllll}
22 \& 0 \& 1 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 1 \& 1 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0

\hline 23 \& 0 \& 1 \& 0 \& 0 \& 0 \& 1 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 1 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 1 \& 0 \& 0

\hline

23 \& 0 \& 1 \& 0 \& 0 \& 0 \& 1 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 1 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 1 \& 0 \& 0

\hline 24 \& 1 \& 0 \& 0 \& 0 \& 1 \& 0

\hline

24 \& 1 \& 0 \& 0 \& 0 \& 1 \& 0

\hline 25 \& 0 \& 0 \& 0 \& 0 \& 1 \& 0 \& 1 \& 0 \& 0 \& 1 \& 0 \& 0 \& 1 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0

\hline

\hline 26 \& 0 \& 1 \& 0 \& 0 \& 0 \& 0 \& 0

\hline 27 \& 0 \& 0 \& 0 \& 0 \& 1 \& 0 \& 0 \& 0 \& 0 \& 1 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0
\end{tabular}

 \begin{tabular}{l|llllllllllllllllllllllllllllllllllll|}
\hline 31 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 1 \& 0 \& 1 \& 0 \& 0 \& 1 \& 0 \& 0 \& 0 \& 0

\hline \& 1 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 1 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 1 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0

32 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 1 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 1 \& 0
\end{tabular}

 \begin{tabular}{l|l|llllllllllllllllllllllllllllllllll}
35 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 1 \& 1 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 1 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0

\hline 36 \& 1 \& 0 \& 0 \& 1 \& 0 \& 1

36 \& 1 \& 0 \& 0 \& 1 \& 0 \& 1

\hline 37 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 1 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 1 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0
\end{tabular}

 \begin{tabular}{l|llllllllllllllllllllllllllllllllll|l|}
\hline 38 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 1 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 1 \& 0 \& 0 \& 1 \& 0 \& 0 \& 0 \& 0

\hline

39 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 1 \& 0

\hline
\end{tabular} 0

Graph adjacency list example [40 vertices]

vertex	adjacency list
1	$6,24,34,36$
2	$12,22,23,29$
3	$14,15,21$
4	$8,19,28,36$
5	$6,24,25,27$
6	$1,5,7,23$
7	$6,25,32,39$
8	$4,19,30$
9	$10,16,28,35$
10	$9,25,27,35$
11	$13,15,33,34$
12	$2,33,37,38$
13	$11,15,17,25$
14	$3,22,40$
15	$3,11,13,22$
16	$9,20,23,33$
17	$13,20,32,34$
18	$20,30,34,40$
19	$4,8,31,37$
20	$16,17,18,35$
21	$3,31,38$
22	$2,14,15$
23	$2,6,16,26$
24	$1,5,31,38$
25	$5,7,10,13$
26	23,29
27	$5,10,40$
28	$4,9,30,36$
29	2,26
30	$8,18,28$
31	$19,21,24,37$
32	$7,17,37,39$
33	$11,12,16,39$
34	$1,11,17,18$
35	$9,10,20,36$
36	$1,4,28,35$
37	$12,19,31,32$
38	$12,21,24,39$
39	$7,32,33,38$
40	$14,18,27$

A Concrete Representation

- Assume vertices are numbered arbitrarily as $\{1,2, \ldots, n\}$.
- Edges are numbered arbitrarily as $\{1,2, \ldots, \boldsymbol{m}\}$.
- Edges stored in an array/list of size $\boldsymbol{m} . \boldsymbol{E}[j]$ is j th edge with info on end points which are integers in range 1 to n.
- Array Adj of size \boldsymbol{n} for adjacency lists. Adj[i] points to adjacency list of vertex \boldsymbol{i}. $\operatorname{Adj}[i]$ is a list of edge indices in range 1 to \boldsymbol{m}.

A Concrete Representation

Array of edges E

Array of adjacency lists

A Concrete Representation: Advantages

- Edges are explicitly represented/numbered. Scanning/processing all edges easy to do.
- Representation easily supports multigraphs including self-loops.
- Explicit numbering of vertices and edges allows use of arrays: $O(1)$-time operations are easy to understand.
- Can also implement via pointer based lists for certain dynamic graph settings.

THE END

(for now)

