Algorithms \& Models of Computation
CS/ECE 374, Fall 2020
14.5.2

Formal description of algorithm

Recursive solution

(1) Input: $w=w_{1} w_{2} \ldots w_{n}$
(2) Assume r non-terminals in $G: \boldsymbol{R}_{1}, \ldots, \boldsymbol{R}_{\boldsymbol{r}}$.
(3) $\boldsymbol{R}_{1}:$ Start symbol.
(9) $\boldsymbol{f}(\boldsymbol{\ell}, \boldsymbol{s}, \boldsymbol{b})$: $\mathrm{TRUE} \Longleftrightarrow \boldsymbol{w}_{s} \boldsymbol{w}_{\boldsymbol{s}+\mathbf{1}} \ldots, \boldsymbol{w}_{\boldsymbol{s}+\boldsymbol{\ell}-1} \in \boldsymbol{L}\left(\boldsymbol{R}_{\boldsymbol{b}}\right)$.
$=$ Substring \boldsymbol{w} starting at pos ℓ of length \boldsymbol{s} is deriveable by $\boldsymbol{R}_{\boldsymbol{b}}$.
(3) Recursive formula:
(6) For $\ell>1$: \boldsymbol{f} (length, start pos, variable index)

© Output: $w \in L(G) \Longleftrightarrow f(n, 1,1)=1$.

Recursive solution

(1) Input: $\boldsymbol{w}=\boldsymbol{w}_{\mathbf{1}} \boldsymbol{w}_{\mathbf{2}} \ldots \boldsymbol{w}_{\boldsymbol{n}}$
(2) Assume \boldsymbol{r} non-terminals in $\boldsymbol{G}: \boldsymbol{R}_{1}, \ldots, \boldsymbol{R}_{\boldsymbol{r}}$.
(3) \boldsymbol{R}_{1} : Start symbol.
(4) $\boldsymbol{f}(\ell, \boldsymbol{s}, \boldsymbol{b})$: TRUE $\Longleftrightarrow \boldsymbol{w}_{s} \boldsymbol{w}_{s+1} \ldots, \boldsymbol{w}_{s+\ell-1} \in L\left(\boldsymbol{R}_{b}\right)$.
$=$ Substring \boldsymbol{w} starting at pos $\boldsymbol{\ell}$ of length \boldsymbol{s} is deriveable by $\boldsymbol{R}_{\boldsymbol{b}}$.
(5) Recursive formula: $f(\mathbf{1}, s, a)$ is $\mathbf{1} \Longleftrightarrow\left(\boldsymbol{R}_{a} \rightarrow \boldsymbol{w}_{s}\right) \in G$.
(0) For $\ell>1$: \boldsymbol{f} (length, start pos, variable index)

$$
f(\ell, s, a)=\bigvee_{\mu=1}^{\ell-1} \bigvee_{\left(R_{a} \rightarrow R_{\beta} R_{\gamma}\right) \in G}(f(\mu, s, \beta) \wedge f(\ell-\mu, s+\mu, \gamma))
$$

(Output: $w \in L(G) \Longleftrightarrow f(n, 1,1)=1$.

Recursive solution

(1) Input: $\boldsymbol{w}=\boldsymbol{w}_{\mathbf{1}} \boldsymbol{w}_{\mathbf{2}} \ldots \boldsymbol{w}_{\boldsymbol{n}}$
(2) Assume \boldsymbol{r} non-terminals in $\boldsymbol{G}: \boldsymbol{R}_{1}, \ldots, \boldsymbol{R}_{\boldsymbol{r}}$.
(3) \boldsymbol{R}_{1} : Start symbol.
(4) $\boldsymbol{f}(\ell, \boldsymbol{s}, \boldsymbol{b})$: TRUE $\Longleftrightarrow \boldsymbol{w}_{s} \boldsymbol{w}_{s+1} \ldots, \boldsymbol{w}_{s+\ell-1} \in L\left(\boldsymbol{R}_{b}\right)$.
$=$ Substring \boldsymbol{w} starting at pos $\boldsymbol{\ell}$ of length \boldsymbol{s} is deriveable by $\boldsymbol{R}_{\boldsymbol{b}}$.
(5) Recursive formula: $f(\mathbf{1}, s, a)$ is $\mathbf{1} \Longleftrightarrow\left(\boldsymbol{R}_{a} \rightarrow \boldsymbol{w}_{s}\right) \in G$.
(0) For $\ell>1$: \boldsymbol{f} (length, start pos, variable index)

$$
f(\ell, s, a)=\bigvee_{\mu=1}^{\ell-1} \bigvee_{\left(R_{a} \rightarrow R_{\beta} R_{\gamma}\right) \in G}(f(\mu, s, \beta) \wedge f(\ell-\mu, s+\mu, \gamma))
$$

(Output: $w \in L(G) \Longleftrightarrow f(\overparen{W}, 1,1)=1$.

Analysis

Assume $\boldsymbol{G}=\left\{\boldsymbol{R}_{\mathbf{1}}, \boldsymbol{R}_{\mathbf{2}}, \ldots, \boldsymbol{R}_{\mathbf{r}}\right\}$ with start symbol $\boldsymbol{R}_{\mathbf{1}}$

- f (length, start pos, variable index).
- Number of subproblems: $\boldsymbol{O}\left(r n^{2}\right)$
$-{ }^{-5 p a}$ ค $0(m$ sur P is set of rules
- Total time: $\mathbf{O}\left(|\boldsymbol{P}| r n^{3}\right)$ which is polynomial in both $|w|$ and $|G|$. For fixed G the run time is cubic in input string length.
- Running time can be improved to $O\left(n^{3}|P|\right)$
- Not practical for most programming languages. Most languages assume restricted forms of CFGs that enable more efficient parsing algorithms.

Analysis

Assume $\boldsymbol{G}=\left\{\boldsymbol{R}_{\mathbf{1}}, \boldsymbol{R}_{\mathbf{2}}, \ldots, \boldsymbol{R}_{r}\right\}$ with start symbol $\boldsymbol{R}_{\mathbf{1}}$

- \boldsymbol{f} (length, start pos, variable index).
- Number of subproblems: $\boldsymbol{O}\left(r n^{2}\right)$
- Space: $0\left(r n^{2}\right)$
- Time to evaluate a subproblem from previous ones: $\boldsymbol{O}(\mathbb{P} \boldsymbol{n})$ \boldsymbol{P} is set of rules

- Not practical for most programming lan yages. Most languages assume restricted forms of CFGS that enable more efficient parsing algorithms.

Analysis

Assume $\boldsymbol{G}=\left\{\boldsymbol{R}_{\mathbf{1}}, \boldsymbol{R}_{\mathbf{2}}, \ldots, \boldsymbol{R}_{r}\right\}$ with start symbol $\boldsymbol{R}_{\mathbf{1}}$

- \boldsymbol{f} (length, start pos, variable index).
- Number of subproblems: $\mathbf{O}\left(r n^{2}\right)$
- Space: $\boldsymbol{O}\left(r n^{2}\right)$
- Time to evaluate a subproblem from previous ones: $\boldsymbol{O}(|\boldsymbol{P}| \boldsymbol{n})$ \boldsymbol{P} is set of rules
- Total time: $\boldsymbol{O}\left(|\boldsymbol{P}| \boldsymbol{r n}^{3}\right)$ which is polynomial in both $|\boldsymbol{w}|$ and $|\boldsymbol{G}|$. For fixed \boldsymbol{G} the run time is cubic in input string length.
- Running time can be improved to $\boldsymbol{O}\left(\boldsymbol{n}^{3}|\boldsymbol{P}|\right)$.

- Not practical for most programming languages. Most languages assume restricted forms of CFGs that enable more efficient parsing algorithms.

CYK Algorithm


```
Input grammar G: r nonterminal symbols }\mp@subsup{\boldsymbol{R}}{\mathbf{1}}{\ldots
P[\boldsymbol{n}][\boldsymbol{n}](\boldsymbol{N}: Array of booleans. Initialize all to FALSE
for s=1 to n do
    for each unit production }\mp@subsup{\boldsymbol{R}}{\boldsymbol{v}}{}->\mp@subsup{\boldsymbol{x}}{\boldsymbol{s}}{}\mathrm{ do
        P[1][s][v]}\leftarrow TRU
for }\ell=\mathbf{2}\mathrm{ to n do // Length of span
    for s=1 to n-\ell+1 do // Start of span
        for }\boldsymbol{\mu}=\mathbf{1}\mathrm{ to }\ell-\mathbf{1}\mathrm{ do // Partition of span
        for all ( }\mp@subsup{\boldsymbol{~}}{\textrm{a}}{}->\mp@subsup{R}{\beta}{}\mp@subsup{R}{\gamma}{})\inG\mathrm{ do
        if P[泣[s][\beta] and P[\ell-\mu][s+\mu][\gamma] then
                P[\ell][s][a]}\leftarrow TRUE
if P[n][1][1] is TRUE then
    return '`X is member of language''
else
    return '`X}\mathrm{ is not member of language''
```


THE END

(for now)

