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Maximum Weight Independent Set Problem
Input Graph G = (V ,E) and weights w(v) ≥ 0 for each v ∈ V
Goal Find maximum weight independent set in G
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Maximum weight independent set in above graph: {B,D}
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Maximum Weight Independent Set in a Tree
Input Tree T = (V ,E) and weights w(v) ≥ 0 for each v ∈ V
Goal Find maximum weight independent set in T
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Towards a Recursive Solution
For an arbitrary graph G:

1 Number vertices as v1, v2, . . . , vn
2 Find recursively optimum solutions without vn (recurse on G − vn) and with vn

(recurse on G − vn − N(vn) & include vn).
3 Saw that if graph G is arbitrary there was no good ordering that resulted in a small

number of subproblems.

What about a tree? Natural candidate for vn is root r of T?
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Towards a Recursive Solution
Natural candidate for vn is root r of T? Let O be an optimum solution to the whole
problem.
Case r 6∈ O : Then O contains an optimum solution for each subtree of T hanging at

a child of r .
Case r ∈ O : None of the children of r can be in O. O − {r} contains an optimum

solution for each subtree of T hanging at a grandchild of r .

Subproblems? Subtrees of T rooted at nodes in T .

How many of them? O(n)
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Example
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A Recursive Solution
T (u): subtree of T hanging at node u
OPT (u): max weighted independent set value in T (u)

OPT (u) = max

{∑
v child of u OPT (v),

w(u) +
∑

v grandchild of u OPT (v)
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Iterative Algorithm
1 Compute OPT (u) bottom up. To evaluate OPT (u) need to have computed

values of all children and grandchildren of u
2 What is an ordering of nodes of a tree T to achieve above? Post-order traversal of

a tree.
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Iterative Algorithm
MIS-Tree(T):

Let v1, v2, . . . , vn be a post-order traversal of nodes of T
for i = 1 to n do

M[vi ] = max

( ∑
vj child of vi

M[vj ],

w(vi ) +
∑

vj grandchild of vi
M[vj ]

)
return M[vn] (* Note: vn is the root of T *)

Space: O(n) to store the value at each node of T
Running time:

1 Naive bound: O(n2) since each M[vi ] evaluation may take O(n) time and there
are n evaluations.

2 Better bound: O(n). A value M[vj ] is accessed only by its parent and grand
parent.
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THE END
...

(for now)
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