Algorithms \& Models of Computation
CS/ECE 374, Fall 2020
14.3

Maximum Weighted Independent Set in Trees

Maximum Weight Independent Set Problem

Input Graph $\boldsymbol{G}=(\boldsymbol{V}, \boldsymbol{E})$ and weights $\boldsymbol{w}(\boldsymbol{v}) \geq \mathbf{0}$ for each $\boldsymbol{v} \in \boldsymbol{V}$
Goal Find maximum weight independent set in \boldsymbol{G}

Maximum weight independent set in above graph: $\{B, D\}$

Maximum Weight Independent Set Problem

Input Graph $\boldsymbol{G}=(\boldsymbol{V}, \boldsymbol{E})$ and weights $\boldsymbol{w}(\boldsymbol{v}) \geq \mathbf{0}$ for each $\boldsymbol{v} \in \boldsymbol{V}$
Goal Find maximum weight independent set in \boldsymbol{G}

Maximum weight independent set in above graph: $\{\boldsymbol{B}, \boldsymbol{D}\}$

Maximum Weight Independent Set in a Tree

Input Tree $\boldsymbol{T}=(\boldsymbol{V}, \boldsymbol{E})$ and weights $\boldsymbol{w}(\boldsymbol{v}) \geq \mathbf{0}$ for each $\boldsymbol{v} \in \boldsymbol{V}$
Goal Find maximum weight independent set in \boldsymbol{T}

Maximum weight independent set in above tree: ??

Towards a Recursive Solution

For an arbitrary graph \boldsymbol{G} :
(1) Number vertices as $\boldsymbol{v}_{\mathbf{1}}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{\boldsymbol{n}}$
(2) Find recursively optimum solutions without $\boldsymbol{v}_{\boldsymbol{n}}$ (recurse on $\boldsymbol{G}-\boldsymbol{v}_{\boldsymbol{n}}$) and with $\boldsymbol{v}_{\boldsymbol{n}}$ (recurse on $\boldsymbol{G}-\boldsymbol{v}_{n}-\boldsymbol{N}\left(\boldsymbol{v}_{n}\right) \&$ include $\boldsymbol{v}_{\boldsymbol{n}}$).
(3) Saw that if graph \boldsymbol{G} is arbitrary there was no good ordering that resulted in a small number of subproblems.

What about a tree? Natural candidate for $\boldsymbol{v}_{\boldsymbol{n}}$ is root \boldsymbol{r} of \boldsymbol{T} ?

Towards a Recursive Solution

For an arbitrary graph \boldsymbol{G} :
(1) Number vertices as $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{\boldsymbol{n}}$
(2) Find recursively optimum solutions without $\boldsymbol{v}_{\boldsymbol{n}}$ (recurse on $\boldsymbol{G}-\boldsymbol{v}_{\boldsymbol{n}}$) and with $\boldsymbol{v}_{\boldsymbol{n}}$ (recurse on $\boldsymbol{G}-\boldsymbol{v}_{\boldsymbol{n}}-\boldsymbol{N}\left(\boldsymbol{v}_{\boldsymbol{n}}\right)$ \& include $\boldsymbol{v}_{\boldsymbol{n}}$).
(0) Saw that if graph \boldsymbol{G} is arbitrary there was no good ordering that resulted in a small number of subproblems.

What about a tree? Natural candidate for v_{n} is root r of T ?

Towards a Recursive Solution

For an arbitrary graph \boldsymbol{G} :
(1) Number vertices as $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{\boldsymbol{n}}$
(2) Find recursively optimum solutions without $\boldsymbol{v}_{\boldsymbol{n}}$ (recurse on $\boldsymbol{G}-\boldsymbol{v}_{\boldsymbol{n}}$) and with $\boldsymbol{v}_{\boldsymbol{n}}$ (recurse on $\boldsymbol{G}-\boldsymbol{v}_{\boldsymbol{n}}-\boldsymbol{N}\left(\boldsymbol{v}_{\boldsymbol{n}}\right)$ \& include $\boldsymbol{v}_{\boldsymbol{n}}$).
(3) Saw that if graph \boldsymbol{G} is arbitrary there was no good ordering that resulted in a small number of subproblems.

What about a tree? Natural candidate for $\boldsymbol{v}_{\boldsymbol{n}}$ is root \boldsymbol{r} of \boldsymbol{T} ?

Towards a Recursive Solution

Natural candidate for $\boldsymbol{v}_{\boldsymbol{n}}$ is root \boldsymbol{r} of \boldsymbol{T} ? Let \mathcal{O} be an optimum solution to the whole problem.
Case $\boldsymbol{r} \notin \mathcal{O}$: Then \mathcal{O} contains an optimum solution for each subtree of \boldsymbol{T} hanging at a child of \boldsymbol{r}.
Case $r \in \mathcal{O}$: None of the children of r can be in $\mathcal{O} \cdot \mathcal{O}-\{r\}$ contains an optimum
solution for each subtree of T hanging at a grandchild of r.

Subproblems? Subtrees of \boldsymbol{T} rooted at nodes in \boldsymbol{T}

How many of them? $\boldsymbol{O}(\boldsymbol{n})$

Towards a Recursive Solution

Natural candidate for $\boldsymbol{v}_{\boldsymbol{n}}$ is root \boldsymbol{r} of \boldsymbol{T} ? Let \mathcal{O} be an optimum solution to the whole problem.
Case $\boldsymbol{r} \notin \mathcal{O}$: Then \mathcal{O} contains an optimum solution for each subtree of \boldsymbol{T} hanging at a child of r.
Case $\boldsymbol{r} \in \mathcal{O}$: None of the children of \boldsymbol{r} can be in $\mathcal{O} . \mathcal{O}-\{\boldsymbol{r}\}$ contains an optimum solution for each subtree of \boldsymbol{T} hanging at a grandchild of \boldsymbol{r}.

Subproblems? Subtrees of \boldsymbol{T} rooted at nodes in \boldsymbol{T}.
How many of them? $O(n)$

Towards a Recursive Solution

Natural candidate for $\boldsymbol{v}_{\boldsymbol{n}}$ is root \boldsymbol{r} of \boldsymbol{T} ? Let \mathcal{O} be an optimum solution to the whole problem.
Case $\boldsymbol{r} \notin \mathcal{O}$: Then \mathcal{O} contains an optimum solution for each subtree of \boldsymbol{T} hanging at a child of \boldsymbol{r}.
Case $\boldsymbol{r} \in \mathcal{O}$: None of the children of \boldsymbol{r} can be in $\mathcal{O} . \mathcal{O}-\{\boldsymbol{r}\}$ contains an optimum solution for each subtree of \boldsymbol{T} hanging at a grandchild of \boldsymbol{r}.

Subproblems? Subtrees of \boldsymbol{T} rooted at nodes in \boldsymbol{T}.

How many of them? $\boldsymbol{O}(\boldsymbol{n})$

Towards a Recursive Solution

Natural candidate for $\boldsymbol{v}_{\boldsymbol{n}}$ is root \boldsymbol{r} of \boldsymbol{T} ? Let \mathcal{O} be an optimum solution to the whole problem.
Case $\boldsymbol{r} \notin \mathcal{O}$: Then \mathcal{O} contains an optimum solution for each subtree of \boldsymbol{T} hanging at a child of \boldsymbol{r}.
Case $\boldsymbol{r} \in \mathcal{O}$: None of the children of \boldsymbol{r} can be in $\mathcal{O} . \mathcal{O}-\{\boldsymbol{r}\}$ contains an optimum solution for each subtree of \boldsymbol{T} hanging at a grandchild of \boldsymbol{r}.

Subproblems? Subtrees of \boldsymbol{T} rooted at nodes in \boldsymbol{T}.

How many of them?

Towards a Recursive Solution

Natural candidate for $\boldsymbol{v}_{\boldsymbol{n}}$ is root \boldsymbol{r} of \boldsymbol{T} ? Let \mathcal{O} be an optimum solution to the whole problem.
Case $\boldsymbol{r} \notin \mathcal{O}$: Then \mathcal{O} contains an optimum solution for each subtree of \boldsymbol{T} hanging at a child of \boldsymbol{r}.
Case $\boldsymbol{r} \in \mathcal{O}$: None of the children of \boldsymbol{r} can be in $\mathcal{O} . \mathcal{O}-\{\boldsymbol{r}\}$ contains an optimum solution for each subtree of \boldsymbol{T} hanging at a grandchild of \boldsymbol{r}.

Subproblems? Subtrees of \boldsymbol{T} rooted at nodes in \boldsymbol{T}.

How many of them? $\boldsymbol{O}(\boldsymbol{n})$

Example

A Recursive Solution

$\boldsymbol{T}(\boldsymbol{u})$: subtree of \boldsymbol{T} hanging at node \boldsymbol{u} OPT(u): max weighted independent set value in $\boldsymbol{T}(\boldsymbol{u})$

$$
\boldsymbol{O P T}(\boldsymbol{u})=\max \left\{\begin{array}{l}
\sum_{v} \text { child of } u \text { OPT }(v), \\
w(u)+\sum_{v} \text { grandchild of } u \text { OPT }(v)
\end{array}\right.
$$

A Recursive Solution

$\boldsymbol{T}(\boldsymbol{u})$: subtree of \boldsymbol{T} hanging at node \boldsymbol{u} OPT(u): max weighted independent set value in $\boldsymbol{T}(\boldsymbol{u})$

$$
\boldsymbol{O P T}(\boldsymbol{u})=\max \left\{\begin{array}{l}
\sum_{\boldsymbol{v} \text { child of } u} \boldsymbol{O P T}(\boldsymbol{v}), \\
\boldsymbol{w}(\boldsymbol{u})+\sum_{\boldsymbol{v} \text { grandchild of } u} \boldsymbol{O P T}(\boldsymbol{v})
\end{array}\right.
$$

Iterative Algorithm

(1) Compute $\boldsymbol{O P T}(\boldsymbol{u})$ bottom up. To evaluate $\boldsymbol{O P T}(\boldsymbol{u})$ need to have computed values of all children and grandchildren of \boldsymbol{u}
(2) What is an ordering of nodes of a tree \boldsymbol{T} to achieve above?

Post-order traversal of
a tree.

Iterative Algorithm

(1) Compute $\operatorname{OPT}(\boldsymbol{u})$ bottom up. To evaluate $\boldsymbol{O P T}(\boldsymbol{u})$ need to have computed values of all children and grandchildren of \boldsymbol{u}
(2) What is an ordering of nodes of a tree \boldsymbol{T} to achieve above? Post-order traversal of a tree.

Iterative Algorithm

MIS-Tree (\boldsymbol{T}) :
Let $\boldsymbol{v}_{\mathbf{1}}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{\boldsymbol{n}}$ be a post-order traversal of nodes of T for $\boldsymbol{i}=1$ to \boldsymbol{n} do

$$
\begin{aligned}
& \boldsymbol{M}\left[\boldsymbol{v}_{\boldsymbol{i}}\right]=\max \binom{\sum_{\boldsymbol{v}_{j} \text { child of } \boldsymbol{v}_{\boldsymbol{i}}} \boldsymbol{M}\left[\boldsymbol{v}_{j}\right],}{\boldsymbol{w}\left(\boldsymbol{v}_{\boldsymbol{i}}\right)+\sum_{\boldsymbol{v}_{j} \text { grandchild of } \boldsymbol{v}_{\boldsymbol{i}}} \boldsymbol{M}\left[\boldsymbol{v}_{\boldsymbol{j}}\right]} \\
& \text { return } \left.\boldsymbol{M}\left[\boldsymbol{v}_{\boldsymbol{n}}\right] \text { (* Note: } \boldsymbol{v}_{\boldsymbol{n}} \text { is the root of } \boldsymbol{T} *\right)
\end{aligned}
$$

Space

$O(n)$ to store the value at each node of T
(1) Naive bound: $O\left(n^{2}\right)$ since each $M\left[v_{i}\right]$ evaluation may take $O(n)$ time and there are \boldsymbol{n} evaluations.
(2) Better bound: $O(\boldsymbol{n})$. A value $M\left[v_{j}\right]$ is accessed only by its parent and grand parent.

Iterative Algorithm

MIS-Tree (\boldsymbol{T}) :
Let $\boldsymbol{v}_{\mathbf{1}}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{\boldsymbol{n}}$ be a post-order traversal of nodes of T for $\boldsymbol{i}=1$ to \boldsymbol{n} do

$$
\begin{aligned}
& \boldsymbol{M}\left[\boldsymbol{v}_{\boldsymbol{i}}\right]=\max \binom{\sum_{\boldsymbol{v}_{j} \text { child of } \boldsymbol{v}_{\boldsymbol{i}}} \boldsymbol{M}\left[\boldsymbol{v}_{j}\right],}{\boldsymbol{w}\left(\boldsymbol{v}_{\boldsymbol{i}}\right)+\sum_{\boldsymbol{v}_{j} \text { grandchild of } \boldsymbol{v}_{\boldsymbol{i}}} \boldsymbol{M}\left[\boldsymbol{v}_{\boldsymbol{j}}\right]} \\
& \text { return } \left.\boldsymbol{M}\left[\boldsymbol{v}_{\boldsymbol{n}}\right] \text { (* Note: } \boldsymbol{v}_{\boldsymbol{n}} \text { is the root of } \boldsymbol{T} *\right)
\end{aligned}
$$

Space: $O(n)$ to store the value at each node of T
(1) Naive bound: $\boldsymbol{O}\left(\boldsymbol{n}^{2}\right)$ since each $\boldsymbol{M}\left[\boldsymbol{v}_{\boldsymbol{i}}\right]$ evaluation may take $\boldsymbol{O}(\boldsymbol{n})$ time and there are \boldsymbol{n} evaluations.
(2) Better bound: $O(n)$. A value $M\left[v_{j}\right]$ is accessed only by its parent and grand parent.

Iterative Algorithm

MIS-Tree (\boldsymbol{T}) :

Let $\boldsymbol{v}_{\mathbf{1}}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{\boldsymbol{n}}$ be a post-order traversal of nodes of T for $\boldsymbol{i}=1$ to \boldsymbol{n} do

$$
\begin{aligned}
& \boldsymbol{M}\left[\boldsymbol{v}_{\boldsymbol{i}}\right]=\max \binom{\sum_{\boldsymbol{v}_{j} \text { child of } \boldsymbol{v}_{\boldsymbol{i}}} \boldsymbol{M}\left[\boldsymbol{v}_{j}\right],}{\boldsymbol{w}\left(\boldsymbol{v}_{\boldsymbol{i}}\right)+\sum_{\boldsymbol{v}_{j} \text { grandchild of } \boldsymbol{v}_{\boldsymbol{i}}} \boldsymbol{M}\left[\boldsymbol{v}_{\boldsymbol{j}}\right]} \\
& \text { return } \left.\boldsymbol{M}\left[\boldsymbol{v}_{\boldsymbol{n}}\right] \text { (* Note: } \boldsymbol{v}_{\boldsymbol{n}} \text { is the root of } \boldsymbol{T} *\right)
\end{aligned}
$$

Space: $\boldsymbol{O}(\boldsymbol{n})$ to store the value at each node of \boldsymbol{T} Running time:
(1) Naive bound: $O\left(n^{2}\right)$ since each $M\left[v_{i}\right]$ evaluation may take $O(n)$ time and there are \boldsymbol{n} evaluations.
(2) Better bound: $\boldsymbol{O}(\boldsymbol{n})$. A value $M\left[v_{j}\right]$ is accessed only by its parent and grand parent.

Iterative Algorithm

$$
\begin{aligned}
& \text { MIS-Tree }(\boldsymbol{T}): \\
& \text { Let } \boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{\boldsymbol{n}} \text { be a post-order traversal of nodes of } \mathrm{T} \\
& \text { for } \boldsymbol{i}=\mathbf{1} \text { to } \boldsymbol{n} \text { do } \\
& \boldsymbol{M}\left[\boldsymbol{v}_{\boldsymbol{i}}\right]=\max \binom{\sum_{\boldsymbol{v}_{j} \text { child of } \boldsymbol{v}_{\boldsymbol{i}}} \boldsymbol{M}\left[\boldsymbol{v}_{j}\right],}{\boldsymbol{w}\left(\boldsymbol{v}_{\boldsymbol{i}}\right)+\sum_{\boldsymbol{v}_{j} \text { grandchild of } \boldsymbol{v}_{\boldsymbol{i}}} \boldsymbol{M}\left[\boldsymbol{v}_{\boldsymbol{j}}\right]} \\
& \text { return } \boldsymbol{M}\left[\boldsymbol{v}_{\boldsymbol{n}}\right]\left(* \text { Note: } \boldsymbol{v}_{\boldsymbol{n}} \text { is the root of } \boldsymbol{T} *\right)
\end{aligned}
$$

Space: $\boldsymbol{O}(\boldsymbol{n})$ to store the value at each node of \boldsymbol{T} Running time:
(1) Naive bound: $\boldsymbol{O}\left(\boldsymbol{n}^{2}\right)$ since each $\boldsymbol{M}\left[\boldsymbol{v}_{\boldsymbol{i}}\right]$ evaluation may take $\boldsymbol{O}(\boldsymbol{n})$ time and there are \boldsymbol{n} evaluations.
(3) Better bound: $O(n)$. A value $M\left[v_{j}\right]$ is accessed only by its parent and grand parent.

Iterative Algorithm

```
MIS-Tree ( \(\boldsymbol{T}\) ) :
    Let \(\boldsymbol{v}_{\mathbf{1}}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{\boldsymbol{n}}\) be a post-order traversal of nodes of T
    for \(\boldsymbol{i}=1\) to \(\boldsymbol{n}\) do
        \(\boldsymbol{M}\left[\boldsymbol{v}_{\boldsymbol{i}}\right]=\max \binom{\sum_{\boldsymbol{v}_{\boldsymbol{j}} \text { child of } \boldsymbol{v}_{\boldsymbol{i}}} \boldsymbol{M}\left[\boldsymbol{v}_{\boldsymbol{j}}\right]}{,\boldsymbol{w}\left(\boldsymbol{v}_{\boldsymbol{i}}\right)+\sum_{\boldsymbol{v}_{\boldsymbol{j}} \text { grandchild of } \boldsymbol{v}_{\boldsymbol{i}}} \boldsymbol{M}\left[\boldsymbol{v}_{\boldsymbol{j}}\right]}\)
return \(M\left[\boldsymbol{v}_{\boldsymbol{n}}\right]\) (* Note: \(\boldsymbol{v}_{\boldsymbol{n}}\) is the root of \(\boldsymbol{T} *\) )
```

Space: $\boldsymbol{O}(\boldsymbol{n})$ to store the value at each node of \boldsymbol{T} Running time:
(1) Naive bound: $\boldsymbol{O}\left(\boldsymbol{n}^{2}\right)$ since each $\boldsymbol{M}\left[\boldsymbol{v}_{\boldsymbol{i}}\right]$ evaluation may take $\boldsymbol{O}(\boldsymbol{n})$ time and there are \boldsymbol{n} evaluations.
(2) Better bound: $\boldsymbol{O}(\boldsymbol{n})$. A value $\boldsymbol{M}\left[\boldsymbol{v}_{\boldsymbol{j}}\right]$ is accessed only by its parent and grand parent.

Example

THE END

(for now)

