Algorithms \& Models of Computation

CS/ECE 374, Fall 2020

13.7

Tangential: Fibonacci and his numbers

Fibonacci $=$ Leonardo Bonacci

(1) CE 1170-1250.
(2) Italian. Spent time in Bugia, Algeria with his father (trader).
(3 Traveled around the Mediterranean coast, learned the Hindu-Arabic numerals
(-) Hindu-Arabic numerals:
(1) Developed before 400 CE by Hindu philosophers.
(2) Arrived to the Arab world sometime before 825CE.
(3) Muhammad ibn Musa al-Khwarizmi (Algorithm/Algebra) wrote a book in 825 CE explaining the new system. (Showed how to solved quadratic equations.)
(5) 1202 CE: Fibonacci wrote a book "Liber Abaci" (book of calculations) that popularized the new system.
(0) Brought and popularized the Hindu-Arabic system to Italy.

Fibonacci numbers

(1) Fibonacci in Liber Abaci posed and solved a problem involving the growth of a population of rabbits based on idealized assumptions.
(2) Describe growth processes.

Every month a mature pair of rabbits give birth to one pair of young rabbits.

Month	grownup pairs	Young pairs
1	1	0
2	1	1
3	2	1
4	3	2
5	5	3
\vdots	\vdots	\vdots
40	$102,334,155$	$63,245,986$

Fibonacci numbers

(1) Fibonacci in Liber Abaci posed and solved a problem involving the growth of a population of rabbits based on idealized assumptions.
(2) Describe growth processes.

Every month a mature pair of rabbits give birth to one pair of young rabbits.

Fibonacci numbers

(1) Fibonacci in Liber Abaci posed and solved a problem involving the growth of a population of rabbits based on idealized assumptions.
(2) Describe growth processes.

Every month a mature pair of rabbits give birth to one pair of young rabbits.

Month	grownup pairs	Young pairs
1	1	0

$102,334,155 \quad 63,245,986$

Fibonacci numbers

(1) Fibonacci in Liber Abaci posed and solved a problem involving the growth of a population of rabbits based on idealized assumptions.
(2) Describe growth processes.

Every month a mature pair of rabbits give birth to one pair of young rabbits.

Month	grownup pairs	Young pairs
1	1	0
2	1	1
3	2	1
4	3	2
5	5	3
	\vdots	\vdots
40	$102,334,155$	$63,245,986$

Fibonacci numbers

(1) Fibonacci in Liber Abaci posed and solved a problem involving the growth of a population of rabbits based on idealized assumptions.
(2) Describe growth processes.

Every month a mature pair of rabbits give birth to one pair of young rabbits.

Month	grownup pairs	Young pairs
1	1	0
2	1	1
3	2	1
4	3	2
5	5	3
\vdots	\vdots	\vdots
40	$102,334,155$	$63,245,986$

Fibonacci numbers

(1) Fibonacci in Liber Abaci posed and solved a problem involving the growth of a population of rabbits based on idealized assumptions.
(2) Describe growth processes.

Every month a mature pair of rabbits give birth to one pair of young rabbits.

Month	grownup pairs	Young pairs
1	1	0
2	1	1
3	2	1
4	3	2

$102,334,155$
$63,245,986$

Fibonacci numbers

(1) Fibonacci in Liber Abaci posed and solved a problem involving the growth of a population of rabbits based on idealized assumptions.
(2) Describe growth processes.

Every month a mature pair of rabbits give birth to one pair of young rabbits.

Month	grownup pairs	Young pairs
1	1	0
2	1	1
3	2	1
4	3	2
5	5	3

$102,334,155 \quad 63,245,986$

Fibonacci numbers

(1) Fibonacci in Liber Abaci posed and solved a problem involving the growth of a population of rabbits based on idealized assumptions.
(2) Describe growth processes.

Every month a mature pair of rabbits give birth to one pair of young rabbits.

Month	grownup pairs	Young pairs
1	1	0
2	1	1
3	2	1
4	3	2
5	5	3
\vdots	\vdots	\vdots
40	$102,334,155$	$63,245,986$

Fibonacci numbers II
(3) $\lim _{n \rightarrow \infty} F_{n} / F_{n-1}=\varphi$.
(2) Golden ratio: $\varphi=(\sqrt{5}+1) / 2 \approx 1.618033$.
(3) For $\boldsymbol{a}>\boldsymbol{b}>0, \varphi=\frac{a+b}{a}=\frac{a}{b} . \Longrightarrow \frac{\varphi+1}{\varphi}=\varphi . \Longrightarrow 0=\varphi^{2}-\varphi-1$.
(0) $\varphi=\frac{1 \pm \sqrt{1+4}}{2} \quad$ since φ is not negative, so...
(6) $F_{n}=\frac{\varphi^{n}-(1-\varphi)^{n}}{\sqrt{5}}$
(0) Golden ratio goes back to Euclid
(-3) Many applications of GR and Fibonacci numbers in nature, models (stock market), art, etc..

Fibonacci numbers II
(1) $\lim _{n \rightarrow \infty} F_{n} / F_{n-1}=\varphi$.
(2) Golden ratio: $\varphi=(\sqrt{5}+1) / 2 \approx 1.618033$.
(a) $\varphi=\frac{1 \pm \sqrt{1+4}}{2}$
since φ is not negative, so..
(3) $F_{n}=\frac{\varphi^{n}-(1-\varphi)^{n}}{\sqrt{5}}$
(0) Golden ratio goes back to Euclid
(3) Many applications of GR and Fibonacci numbers in nature, models (stock market), art, etc..

Fibonacci numbers II
(1) $\lim _{n \rightarrow \infty} F_{n} / F_{n-1}=\varphi$.
(2) Golden ratio: $\varphi=(\sqrt{5}+1) / 2 \approx 1.618033$.
(3) For $a>b>0, \varphi=\frac{a+b}{a}=\frac{a}{b}$. $\Rightarrow \frac{\varphi+1}{\varphi}=\varphi . \Longrightarrow 0=\varphi^{2}-\varphi-1$.
(0) $\varphi=\frac{1 \pm \sqrt{1+4}}{2}$
since φ is not negative, so..
(3) $F_{n}=\frac{\varphi^{n}-(1-\varphi)^{n}}{\sqrt{5}}$
(0) Golden ratio goes back to Euclid
(O) Many applications of GR and Fibonacci numbers in nature, models (stock market), art, etc..

Fibonacci numbers II

(1) $\lim _{n \rightarrow \infty} F_{n} / F_{n-1}=\varphi$.
(2) Golden ratio: $\varphi=(\sqrt{5}+1) / 2 \approx 1.618033$.
(3) For $a>b>0, \varphi=\frac{a+b}{a}=\frac{a}{b}$. $\Rightarrow \frac{\varphi+1}{\varphi}=\varphi . \Longrightarrow 0=\varphi^{2}-\varphi-1$.
(-) $\varphi=\frac{1 \pm \sqrt{1+4}}{2} \quad$ since φ is not negative, so...
(0) Golden ratio goes back to Euclid
© Many applications of GR and Fibonacci numbers in nature, models (stock market), art, etc..

Fibonacci numbers II

(1) $\lim _{n \rightarrow \infty} F_{\boldsymbol{n}} / F_{\boldsymbol{n}-1}=\varphi$.
(2) Golden ratio: $\varphi=(\sqrt{5}+1) / 2 \approx 1.618033$.
(3) For $\boldsymbol{a}>\boldsymbol{b}>0, \varphi=\frac{a+b}{\boldsymbol{a}}=\frac{\boldsymbol{a}}{\boldsymbol{b}}$. $\Rightarrow \frac{\varphi+1}{\varphi}=\varphi . \Longrightarrow 0=\varphi^{2}-\varphi-1$.
(9) $\varphi=\frac{1 \pm \sqrt{1+4}}{2} \quad$ since φ is not negative, so...
(5) $F_{n}=\frac{\varphi^{n}-(1-\varphi)^{n}}{\sqrt{5}}$
(0) Golden ratio goes back to Euclid
(3) Many applications of GR and Fibonacci numbers in nature, models (stock market), art, etc..

Fibonacci numbers II

(1) $\lim _{n \rightarrow \infty} F_{\boldsymbol{n}} / F_{\boldsymbol{n}-1}=\varphi$.
(2) Golden ratio: $\varphi=(\sqrt{5}+1) / 2 \approx 1.618033$.
(3) For $\boldsymbol{a}>\boldsymbol{b}>0, \varphi=\frac{a+b}{\boldsymbol{a}}=\frac{\boldsymbol{a}}{\boldsymbol{b}}$. $\Rightarrow \frac{\varphi+1}{\varphi}=\varphi . \Longrightarrow 0=\varphi^{2}-\varphi-1$.
(4) $\varphi=\frac{1 \pm \sqrt{1+4}}{2} \quad$ since φ is not negative, so...
(5) $F_{n}=\frac{\varphi^{n}-(1-\varphi)^{n}}{\sqrt{5}}$
(0) Golden ratio goes back to Euclid

(3) Many applications of GR and Fibonacci numbers in nature, models (stock market),

Fibonacci numbers II

(1) $\lim _{n \rightarrow \infty} F_{n} / F_{n-1}=\varphi$.
(2) Golden ratio: $\varphi=(\sqrt{5}+1) / 2 \approx 1.618033$.
(3) For $a>b>0, \varphi=\frac{a+b}{a}=\frac{a}{b}$. $\Rightarrow \frac{\varphi+1}{\varphi}=\varphi . \Longrightarrow 0=\varphi^{2}-\varphi-1$.
(-) $\varphi=\frac{1 \pm \sqrt{1+4}}{2} \quad$ since φ is not negative, so...

- $F_{n}=\frac{\varphi^{n}-(1-\varphi)^{n}}{\sqrt{5}}$
- Golden ratio goes back to Euclid

(1) Many applications of GR and Fibonacci numbers in nature, models (stock market), art, etc...

Fibonacci numbers: Binet's formula

(1) $\varphi=\frac{1+\sqrt{5}}{2}$ and $\psi=\frac{1-\sqrt{5}}{2}=1-\varphi$ are solution to the equation: $x^{2}=x+1$.
(2) As such, φ and ψ a solution to the equation: $x^{\boldsymbol{n}}=x^{\boldsymbol{n}-1}+x^{\boldsymbol{n}-2}$.
(3) Consider the sequence $U_{n}=U_{n-1}+U_{n-2}$.

For any $\alpha, \beta \in \mathbb{R}$, consider $U_{n}=\alpha \varphi^{n}+\beta \psi^{n}$. A valid solution to the sequence.

Fibonacci numbers: Binet's formula

(1) $\varphi=\frac{1+\sqrt{5}}{2}$ and $\psi=\frac{1-\sqrt{5}}{2}=1-\varphi$ are solution to the equation: $x^{2}=x+1$
(2) As such, φ and ψ a solution to the equation: $x^{\boldsymbol{n}}=x^{\boldsymbol{n}-1}+x^{\boldsymbol{n}-2}$.
(3) Consider the sequence $\boldsymbol{U}_{\boldsymbol{n}}=\boldsymbol{U}_{\boldsymbol{n}-1}+\boldsymbol{U}_{\boldsymbol{n}-2}$. For any $\alpha, \beta \in \mathbb{R}$, consider $U_{n}=\alpha \varphi^{n}+\boldsymbol{\beta} \psi^{\boldsymbol{n}}$. A valid solution to the sequence.

Fibonacci numbers: Binet's formula

(1) $\varphi=\frac{1+\sqrt{5}}{2}$ and $\psi=\frac{1-\sqrt{5}}{2}=1-\varphi$ are solution to the equation: $x^{2}=x+1$
(2) As such, φ and ψ a solution to the equation: $x^{n}=x^{n-1}+x^{n-2}$.
(3) Consider the sequence $\boldsymbol{U}_{\boldsymbol{n}}=\boldsymbol{U}_{\boldsymbol{n}-1}+\boldsymbol{U}_{\boldsymbol{n}-2}$. For any $\alpha, \beta \in \mathbb{R}$, consider $U_{n}=\alpha \varphi^{n}+\beta \psi^{n}$. A valid solution to the sequence.

$$
U_{\boldsymbol{n}}=U_{\boldsymbol{n}-1}+U_{\boldsymbol{n}-2}=\boldsymbol{\alpha} \varphi^{\boldsymbol{n}-1}+\boldsymbol{\beta} \psi^{\boldsymbol{n}-1}+\boldsymbol{\alpha} \varphi^{\boldsymbol{n}-2}+\boldsymbol{\beta} \psi^{\boldsymbol{n}-2}
$$

Fibonacci numbers: Binet's formula

(1) $\varphi=\frac{1+\sqrt{5}}{2}$ and $\psi=\frac{1-\sqrt{5}}{2}=1-\varphi$ are solution to the equation: $x^{2}=x+1$.
(2) As such, φ and ψ a solution to the equation: $x^{n}=x^{n-1}+x^{n-2}$.
(3) Consider the sequence $\boldsymbol{U}_{\boldsymbol{n}}=\boldsymbol{U}_{\boldsymbol{n}-1}+\boldsymbol{U}_{\boldsymbol{n}-2}$. For any $\alpha, \beta \in \mathbb{R}$, consider $U_{n}=\alpha \varphi^{\boldsymbol{n}}+\boldsymbol{\beta} \psi^{\boldsymbol{n}}$. A valid solution to the sequence.

$$
\begin{aligned}
U_{\boldsymbol{n}} & =U_{\boldsymbol{n}-1}+U_{\boldsymbol{n}-2}=\boldsymbol{\alpha} \varphi^{\boldsymbol{n}-1}+\boldsymbol{\beta} \psi^{\boldsymbol{n}-1}+\boldsymbol{\alpha} \varphi^{\boldsymbol{n}-2}+\boldsymbol{\beta} \psi^{\boldsymbol{n}-2} \\
& =\left(\boldsymbol{\alpha} \varphi^{\boldsymbol{n}-1}+\boldsymbol{\alpha} \varphi^{\boldsymbol{n}-2}\right)+\left(\boldsymbol{\beta} \psi^{\boldsymbol{n}-1}+\boldsymbol{\beta} \psi^{\boldsymbol{n}-2}\right)
\end{aligned}
$$

Fibonacci numbers: Binet's formula

(1) $\varphi=\frac{1+\sqrt{5}}{2}$ and $\psi=\frac{1-\sqrt{5}}{2}=1-\varphi$ are solution to the equation: $x^{2}=x+1$
(2) As such, φ and ψ a solution to the equation: $x^{n}=x^{n-1}+x^{n-2}$.
(3) Consider the sequence $\boldsymbol{U}_{\boldsymbol{n}}=\boldsymbol{U}_{\boldsymbol{n}-1}+\boldsymbol{U}_{\boldsymbol{n}-2}$. For any $\alpha, \beta \in \mathbb{R}$, consider $U_{n}=\alpha \varphi^{n}+\boldsymbol{\beta} \psi^{\boldsymbol{n}}$. A valid solution to the sequence.

$$
\begin{aligned}
U_{\boldsymbol{n}} & =U_{\boldsymbol{n}-1}+U_{\boldsymbol{n}-2}=\boldsymbol{\alpha} \varphi^{\boldsymbol{n}-1}+\boldsymbol{\beta} \psi^{\boldsymbol{n}-1}+\boldsymbol{\alpha} \varphi^{\boldsymbol{n}-2}+\boldsymbol{\beta} \psi^{\boldsymbol{n}-2} \\
& =\left(\boldsymbol{\alpha} \varphi^{\boldsymbol{n}-1}+\boldsymbol{\alpha} \varphi^{\boldsymbol{n}-2}\right)+\left(\boldsymbol{\beta} \psi^{\boldsymbol{n}-1}+\boldsymbol{\beta} \psi^{\boldsymbol{n}-2}\right)=U_{\boldsymbol{n}-1}+U_{n-2}
\end{aligned}
$$

Fibonacci numbers: Binet's formula

(1) $\varphi=\frac{1+\sqrt{5}}{2}$ and $\psi=\frac{1-\sqrt{5}}{2}=1-\varphi$ are solution to the equation: $x^{2}=x+1$
(2) As such, φ and ψ a solution to the equation: $x^{\boldsymbol{n}}=x^{\boldsymbol{n}-1}+x^{\boldsymbol{n}-2}$.
(3) Consider the sequence $\boldsymbol{U}_{\boldsymbol{n}}=\boldsymbol{U}_{\boldsymbol{n}-1}+\boldsymbol{U}_{\boldsymbol{n}-2}$. For any $\alpha, \beta \in \mathbb{R}$, consider $U_{n}=\alpha \varphi^{n}+\boldsymbol{\beta} \psi^{n}$. A valid solution to the sequence.

$$
\begin{aligned}
U_{\boldsymbol{n}} & =\boldsymbol{U}_{\boldsymbol{n}-1}+\boldsymbol{U}_{\boldsymbol{n}-2}=\boldsymbol{\alpha} \varphi^{\boldsymbol{n}-1}+\boldsymbol{\beta} \psi^{\boldsymbol{n}-1}+\boldsymbol{\alpha} \varphi^{\boldsymbol{n}-2}+\boldsymbol{\beta} \psi^{\boldsymbol{n}-2} \\
& =\left(\boldsymbol{\alpha} \varphi^{\boldsymbol{n}-1}+\boldsymbol{\alpha} \varphi^{\boldsymbol{n}-2}\right)+\left(\boldsymbol{\beta} \psi^{\boldsymbol{n}-1}+\boldsymbol{\beta} \psi^{\boldsymbol{n}-2}\right)=\boldsymbol{U}_{\boldsymbol{n}-1}+U_{\boldsymbol{n}-2}
\end{aligned}
$$

(4) Solve the system

$$
U_{0}=0 \text { and } \boldsymbol{U}_{1}=1 \Longleftrightarrow \boldsymbol{\alpha} \varphi^{0}+\boldsymbol{\beta} \psi^{0}=0 \text { and } \boldsymbol{\alpha} \varphi^{1}+\boldsymbol{\beta} \boldsymbol{\psi}^{1}=1
$$

Fibonacci numbers: Binet's formula

(1) $\varphi=\frac{1+\sqrt{5}}{2}$ and $\psi=\frac{1-\sqrt{5}}{2}=1-\varphi$ are solution to the equation: $x^{2}=x+1$
(2) As such, φ and ψ a solution to the equation: $x^{n}=x^{n-1}+x^{n-2}$.
(3) Consider the sequence $\boldsymbol{U}_{\boldsymbol{n}}=\boldsymbol{U}_{\boldsymbol{n}-1}+\boldsymbol{U}_{\boldsymbol{n}-2}$.

For any $\alpha, \beta \in \mathbb{R}$, consider $U_{n}=\alpha \varphi^{n}+\boldsymbol{\beta} \psi^{n}$. A valid solution to the sequence.

$$
\begin{aligned}
U_{\boldsymbol{n}} & =\boldsymbol{U}_{\boldsymbol{n}-1}+\boldsymbol{U}_{\boldsymbol{n}-2}=\boldsymbol{\alpha} \varphi^{\boldsymbol{n}-1}+\boldsymbol{\beta} \psi^{\boldsymbol{n}-1}+\boldsymbol{\alpha} \varphi^{\boldsymbol{n}-2}+\boldsymbol{\beta} \psi^{\boldsymbol{n}-2} \\
& =\left(\boldsymbol{\alpha} \varphi^{\boldsymbol{n}-1}+\boldsymbol{\alpha} \varphi^{\boldsymbol{n}-2}\right)+\left(\boldsymbol{\beta} \psi^{\boldsymbol{n}-1}+\boldsymbol{\beta} \psi^{\boldsymbol{n}-2}\right)=\boldsymbol{U}_{\boldsymbol{n}-1}+U_{\boldsymbol{n}-2}
\end{aligned}
$$

(4) Solve the system

$$
\boldsymbol{U}_{0}=0 \text { and } \boldsymbol{U}_{1}=1 \Longleftrightarrow \boldsymbol{\alpha} \varphi^{0}+\boldsymbol{\beta} \boldsymbol{\psi}^{0}=0 \text { and } \boldsymbol{\alpha} \varphi^{1}+\boldsymbol{\beta} \boldsymbol{\psi}^{1}=1 \Longrightarrow \boldsymbol{\beta}=-\boldsymbol{\alpha}
$$

Fibonacci numbers: Binet's formula

(1) $\varphi=\frac{1+\sqrt{5}}{2}$ and $\psi=\frac{1-\sqrt{5}}{2}=1-\varphi$ are solution to the equation: $x^{2}=x+1$.
(2) As such, φ and ψ a solution to the equation: $x^{n}=x^{n-1}+x^{n-2}$.
(3) Consider the sequence $\boldsymbol{U}_{\boldsymbol{n}}=\boldsymbol{U}_{\boldsymbol{n}-1}+\boldsymbol{U}_{\boldsymbol{n}-2}$.

For any $\alpha, \beta \in \mathbb{R}$, consider $U_{n}=\alpha \varphi^{n}+\boldsymbol{\beta} \psi^{n}$. A valid solution to the sequence.

$$
\begin{aligned}
U_{\boldsymbol{n}} & =U_{\boldsymbol{n}-1}+U_{\boldsymbol{n}-2}=\boldsymbol{\alpha} \varphi^{\boldsymbol{n}-1}+\boldsymbol{\beta} \psi^{\boldsymbol{n}-1}+\boldsymbol{\alpha} \varphi^{\boldsymbol{n}-2}+\boldsymbol{\beta} \psi^{\boldsymbol{n}-2} \\
& =\left(\boldsymbol{\alpha} \varphi^{\boldsymbol{n}-1}+\boldsymbol{\alpha} \varphi^{\boldsymbol{n}-2}\right)+\left(\boldsymbol{\beta} \psi^{\boldsymbol{n}-1}+\boldsymbol{\beta} \psi^{\boldsymbol{n}-2}\right)=U_{\boldsymbol{n}-1}+U_{\boldsymbol{n}-2}
\end{aligned}
$$

(4) Solve the system

$$
\boldsymbol{U}_{0}=0 \text { and } \boldsymbol{U}_{1}=1 \Longleftrightarrow \boldsymbol{\alpha} \varphi^{0}+\boldsymbol{\beta} \boldsymbol{\psi}^{0}=0 \text { and } \boldsymbol{\alpha} \varphi^{1}+\boldsymbol{\beta} \boldsymbol{\psi}^{1}=1 \Longrightarrow
$$

$$
\beta=-\alpha \Longrightarrow \varphi-\psi=1 / \alpha
$$

Fibonacci numbers: Binet's formula

(1) $\varphi=\frac{1+\sqrt{5}}{2}$ and $\psi=\frac{1-\sqrt{5}}{2}=1-\varphi$ are solution to the equation: $x^{2}=x+1$.
(2) As such, φ and ψ a solution to the equation: $x^{n}=x^{n-1}+x^{n-2}$.
(3) Consider the sequence $\boldsymbol{U}_{\boldsymbol{n}}=\boldsymbol{U}_{\boldsymbol{n}-1}+\boldsymbol{U}_{\boldsymbol{n}-2}$.

For any $\alpha, \beta \in \mathbb{R}$, consider $U_{n}=\alpha \varphi^{n}+\boldsymbol{\beta} \psi^{n}$. A valid solution to the sequence.

$$
\begin{aligned}
U_{\boldsymbol{n}} & =U_{\boldsymbol{n}-1}+U_{\boldsymbol{n}-2}=\boldsymbol{\alpha} \varphi^{\boldsymbol{n}-1}+\boldsymbol{\beta} \psi^{\boldsymbol{n}-1}+\boldsymbol{\alpha} \varphi^{\boldsymbol{n}-2}+\boldsymbol{\beta} \psi^{\boldsymbol{n}-2} \\
& =\left(\boldsymbol{\alpha} \varphi^{\boldsymbol{n}-1}+\boldsymbol{\alpha} \varphi^{\boldsymbol{n}-2}\right)+\left(\boldsymbol{\beta} \psi^{\boldsymbol{n}-1}+\boldsymbol{\beta} \psi^{\boldsymbol{n}-2}\right)=U_{\boldsymbol{n}-1}+U_{\boldsymbol{n}-2}
\end{aligned}
$$

(9) Solve the system

$$
U_{0}=0 \text { and } U_{1}=1 \Longleftrightarrow \boldsymbol{\alpha} \varphi^{0}+\boldsymbol{\beta} \psi^{0}=0 \text { and } \boldsymbol{\alpha} \varphi^{1}+\boldsymbol{\beta} \boldsymbol{\psi}^{1}=1 \Longrightarrow
$$

$$
\boldsymbol{\beta}=-\boldsymbol{\alpha} \Longrightarrow \varphi-\psi=1 / \boldsymbol{\alpha} \Longrightarrow \frac{1+\sqrt{5}}{2}-\frac{1-\sqrt{5}}{2}=1 / \boldsymbol{\alpha}
$$

Fibonacci numbers: Binet's formula

(1) $\varphi=\frac{1+\sqrt{5}}{2}$ and $\psi=\frac{1-\sqrt{5}}{2}=1-\varphi$ are solution to the equation: $x^{2}=x+1$.
(2) As such, φ and ψ a solution to the equation: $x^{n}=x^{n-1}+x^{n-2}$.
(3) Consider the sequence $\boldsymbol{U}_{\boldsymbol{n}}=\boldsymbol{U}_{\boldsymbol{n}-1}+\boldsymbol{U}_{\boldsymbol{n}-2}$.

For any $\alpha, \beta \in \mathbb{R}$, consider $U_{n}=\boldsymbol{\alpha} \varphi^{\boldsymbol{n}}+\boldsymbol{\beta} \boldsymbol{\psi}^{\boldsymbol{n}}$. A valid solution to the sequence.

$$
\begin{aligned}
U_{\boldsymbol{n}} & =U_{\boldsymbol{n}-1}+U_{\boldsymbol{n}-2}=\boldsymbol{\alpha} \varphi^{\boldsymbol{n}-1}+\boldsymbol{\beta} \psi^{\boldsymbol{n}-1}+\boldsymbol{\alpha} \varphi^{\boldsymbol{n}-2}+\boldsymbol{\beta} \psi^{\boldsymbol{n}-2} \\
& =\left(\boldsymbol{\alpha} \varphi^{\boldsymbol{n}-1}+\boldsymbol{\alpha} \varphi^{\boldsymbol{n}-2}\right)+\left(\boldsymbol{\beta} \psi^{\boldsymbol{n}-1}+\boldsymbol{\beta} \psi^{\boldsymbol{n}-2}\right)=U_{\boldsymbol{n}-1}+U_{\boldsymbol{n}-2}
\end{aligned}
$$

(9) Solve the system

$$
U_{0}=0 \text { and } U_{1}=1 \Longleftrightarrow \boldsymbol{\alpha} \varphi^{0}+\boldsymbol{\beta} \psi^{0}=0 \text { and } \boldsymbol{\alpha} \varphi^{1}+\boldsymbol{\beta} \boldsymbol{\psi}^{1}=1 \Longrightarrow
$$

$$
\boldsymbol{\beta}=-\boldsymbol{\alpha} \Longrightarrow \varphi-\psi=1 / \boldsymbol{\alpha} \Longrightarrow \frac{1+\sqrt{5}}{2}-\frac{1-\sqrt{5}}{2}=1 / \boldsymbol{\alpha}
$$

$$
\Longrightarrow \alpha=1 / \sqrt{5}
$$

Fibonacci numbers: Binet's formula

(1) $\varphi=\frac{1+\sqrt{5}}{2}$ and $\psi=\frac{1-\sqrt{5}}{2}=1-\varphi$ are solution to the equation: $x^{2}=x+1$
(2) As such, φ and ψ a solution to the equation: $x^{n}=x^{n-1}+x^{n-2}$.
(3) Consider the sequence $\boldsymbol{U}_{\boldsymbol{n}}=\boldsymbol{U}_{\boldsymbol{n}-1}+\boldsymbol{U}_{\boldsymbol{n}-2}$.

For any $\alpha, \beta \in \mathbb{R}$, consider $U_{n}=\boldsymbol{\alpha} \varphi^{\boldsymbol{n}}+\boldsymbol{\beta} \boldsymbol{\psi}^{\boldsymbol{n}}$. A valid solution to the sequence.

$$
\begin{aligned}
U_{\boldsymbol{n}} & =U_{\boldsymbol{n}-1}+\boldsymbol{U}_{\boldsymbol{n}-2}=\boldsymbol{\alpha} \varphi^{\boldsymbol{n}-1}+\boldsymbol{\beta} \psi^{\boldsymbol{n}-1}+\boldsymbol{\alpha} \varphi^{\boldsymbol{n}-2}+\boldsymbol{\beta} \psi^{\boldsymbol{n}-2} \\
& =\left(\boldsymbol{\alpha} \varphi^{\boldsymbol{n}-1}+\boldsymbol{\alpha} \varphi^{\boldsymbol{n}-2}\right)+\left(\boldsymbol{\beta} \psi^{\boldsymbol{n}-1}+\boldsymbol{\beta} \psi^{\boldsymbol{n}-2}\right)=\boldsymbol{U}_{\boldsymbol{n}-1}+U_{\boldsymbol{n}-2}
\end{aligned}
$$

(9) Solve the system

$$
U_{0}=0 \text { and } U_{1}=1 \Longleftrightarrow \boldsymbol{\alpha} \varphi^{0}+\boldsymbol{\beta} \psi^{0}=0 \text { and } \boldsymbol{\alpha} \varphi^{1}+\boldsymbol{\beta} \boldsymbol{\psi}^{1}=1 \Longrightarrow
$$

$$
\boldsymbol{\beta}=-\boldsymbol{\alpha} \Longrightarrow \varphi-\psi=1 / \boldsymbol{\alpha} \Longrightarrow \frac{1+\sqrt{5}}{2}-\frac{1-\sqrt{5}}{2}=1 / \boldsymbol{\alpha}
$$

$$
\Longrightarrow \alpha=1 / \sqrt{5} \Longrightarrow F_{n}=U_{n}=\alpha \varphi^{n}+\beta \psi^{n}=\frac{\varphi^{n}-(1-\varphi)^{n}}{\sqrt{5}}
$$

Fibonacci numbers really fast

$$
\binom{y}{x+y}=\left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right)\binom{x}{y} .
$$

As such,

$$
\begin{aligned}
\binom{F_{n-1}}{F_{n}} & =\left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right)\binom{F_{n-2}}{F_{n-1}}=\left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right)^{2}\binom{F_{n-3}}{F_{n-2}} \\
& =\left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right)^{n-3}\binom{F_{2}}{F_{1}} .
\end{aligned}
$$

More on fast Fibonacci numbers

Continued

Thus, computing the nth Fibonacci number can be done by computing $\left(\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right)^{n-3}$. Which can be done in $O(\log n)$ time (how?). What is wrong?

