Algorithms & Models of Computation CS/ECE 374, Fall 2020

13.6 Supplemental: Some experiments with memoization

Edit distance: different memoizations

Input size	Running time in seconds		
n	DP	Partial	Implicit memoization
1,250	0.01	0.04	0.20
2,500	0.04	0.15	0.84
5,000	0.18	0.64	3.73
10,000	0.72	2.50	15.05
20,000	2.88	9.91	55.35
40,000	12.00	40.00	out of memory

For the input n, two random strings of length n were generated, and their distance computed using edit distance.

Note, that edit-distance is simple enough to that DP gets very good performance. For more complicated problems, the advantage of DP would probably be much smaller. The asymptotic running time here is $\Theta(n^2)$.

Edit distance: different memoizations

More details

- The implementation was done in C++, using -O9 in compilation.
- **2** DP = Dynamic Programming = iterative implementation using arrays.
- Partial memoization = Still uses recursive code, but remembers the results in tables that are managed directly by the code.
- Implicit memoization = implemented using the standard unordered_map.

Edit distance: different memoizations

Conclusions

- If you are in interview setup, you should probably solve the problem using DP. That what you would be expected to do.
- Otherwise, I would probably implement partial memoization it still has the simplicity of the recursive solution, while having a decent performance. If I really care about performance I would implement the DP.
- Using implicit memoization probably makes sense only if running time is not really an issue.

THE END

(for now)

. . .