Algorithms \& Models of Computation

CS/ECE 374, Fall 2020

13.4

Longest Increasing Subsequence Revisited

Algorithms \& Models of Computation
CS/ECE 374, Fall 2020
13.4.1

Longest Increasing Subsequence

Sequences

Definition 13.1.

Sequence: an ordered list $a_{1}, a_{2}, \ldots, a_{\boldsymbol{n}}$. Length of a sequence is number of elements in the list.

Definition 13.2.

$a_{i_{1}}, \ldots, a_{i_{k}}$ is a subsequence of $a_{1}, \ldots, a_{\boldsymbol{n}}$ if $1 \leq i_{1}<i_{2}<\ldots<\boldsymbol{i}_{k} \leq \boldsymbol{n}$.

Definition 13.3.

A sequence is increasing if $a_{1}<a_{2}<\ldots<a_{\boldsymbol{n}}$. It is non-decreasing if $a_{1} \leq a_{2} \leq \ldots \leq a_{\boldsymbol{n}}$. Similarly decreasing and non-increasing.

Sequences

Example...

Example 13.4.

(1) Sequence: $6,3,5,2,7,8,1,9$
(2) Subsequence of above sequence: $5,2,1$
(3) Increasing sequence: $3,5,9,17,54$
(9) Decreasing sequence: $34,21,7,5,1$
(5) Increasing subsequence of the first sequence: $2,7,9$.

Longest Increasing Subsequence Problem

Input A sequence of numbers $a_{1}, a_{2}, \ldots, a_{n}$
Goal Find an increasing subsequence $a_{i_{1}}, a_{i_{2}}, \ldots, a_{i_{k}}$ of maximum length

Example 13.5.

(1) Seauence: 6 3, 5, 2, 7, 8, 1
(2) Increasing subsequences: 6, 7, 8 and 3, 5, 7, 8 and 2, 7 etc
(3) Longest increasing subsequence: $3,5,7,8$

Longest Increasing Subsequence Problem

Input A sequence of numbers $a_{1}, a_{2}, \ldots, a_{n}$
Goal Find an increasing subsequence $a_{i_{1}}, a_{i_{2}}, \ldots, a_{i_{k}}$ of maximum length

Example 13.5.

(1) Sequence: $6,3,5,2,7,8,1$
(2) Increasing subsequences: 6, 7, 8 and 3,5,7, 8 and 2, 7 etc
(3) Longest increasing subsequence: $3,5,7,8$

Recursive Approach: Take 1

LIS: Longest increasing subsequence
Can we find a recursive algorithm for LIS?
$\operatorname{LIS}(\boldsymbol{A}[1 . . n]):$
(1) Case 1: Does not contain $A[n]$ in which case
$\operatorname{LIS}(A[1 . . n])=\operatorname{LIS}(A[1 . .(n-1)])$
(2) Case 2: contains $\boldsymbol{A}[\boldsymbol{n}]$ in which case $\operatorname{IIS}(A[1 \ldots n])$ is not so clear

Observation 13.6.
For second case we want to find a subsequence in $A[1 . .(n-1)]$ that is restricted to numbers less than $A[n]$. This suggests that a more general problem is LIS_smaller $(A[1 . . n], x)$ which gives the longest increasing subsequence in A where each number in the sequence is less than x.

Recursive Approach: Take 1

LIS: Longest increasing subsequence

Can we find a recursive algorithm for LIS?
$\operatorname{LIS}(\boldsymbol{A}[1 . . \boldsymbol{n}]):$
(1) Case 1: Does not contain $\boldsymbol{A}[\boldsymbol{n}]$ in which case
$\operatorname{LIS}(\boldsymbol{A}[1 . . \boldsymbol{n}])=\operatorname{LIS}(\boldsymbol{A}[1 . .(\boldsymbol{n}-1)])$
(2) Case 2: contains $\boldsymbol{A}[\boldsymbol{n}]$ in which case $\operatorname{LIS}(\boldsymbol{A}[1 . . \boldsymbol{n}])$ is not so clear.

Observation 13.6.

For second case we want to find a subsequence in $A[1 . .(n-1)]$ that is restricted to numbers less than $\boldsymbol{A}[\boldsymbol{n}]$. This suggests that a more general problem is LIS_smaller $(\boldsymbol{A}[1 . . n], \boldsymbol{x})$ which gives the longest increasing subsequence in \boldsymbol{A} where each number in the sequence is less than x.

Recursive Approach

$\operatorname{LIS}(A[1 . . n])$: the length of longest increasing subsequence in A
LIS_smaller $(\boldsymbol{A}[1 . . n], x)$: length of longest increasing subsequence in $\boldsymbol{A}[1 . . n]$ with all numbers in subsequence less than x

```
LIS_smaller (A[1..i], x):
    if \(\boldsymbol{i}=0\) then return 0
    \(\boldsymbol{m}=\) LIS_smaller \((\boldsymbol{A}[1 . . \boldsymbol{i}-1], \boldsymbol{x})\)
    if \(A[i]<x\) then
        \(\boldsymbol{m}=\boldsymbol{m a x}(\boldsymbol{m}, 1+\) LIS_smaller \((\boldsymbol{A}[1 . . \boldsymbol{i}-1], \boldsymbol{A}[\boldsymbol{i}]))\)
    Output m
```

$\operatorname{LIS}(A[1 . . n]):$
return LIS_smaller ($\boldsymbol{A}[1 . . n], \infty)$

Recursive Approach

```
LIS_smaller (A[1..i], \(\boldsymbol{x}\) ):
    if \(\boldsymbol{i}=0\) then return 0
    \(\boldsymbol{m}=\) LIS_smaller \((\boldsymbol{A}[1 . . \boldsymbol{i}-1], \boldsymbol{x})\)
    if \(A[i]<x\) then
        \(\boldsymbol{m}=\boldsymbol{m a x}(\boldsymbol{m}, 1+\) LIS_smaller \((\boldsymbol{A}[1 . . \boldsymbol{i}-1], \boldsymbol{A}[\boldsymbol{i}]))\)
    Output m
```

```
LIS(A[1..n]):
    return LIS_smaller (A[1..n], \infty)
```

- How many distinct sub-problems will LIS_smaller $(\boldsymbol{A}[1 . . n], \infty)$ generate?
- What is the running time if we memoize recursion? $O\left(n^{2}\right)$ since each call takes $O(1)$ time to assemble the answers from to recursive calls and no other
computation.
- How much space for memoization? $O\left(n^{2}\right)$

Recursive Approach

```
LIS_smaller (A[1..i], \(\boldsymbol{x}\) ):
    if \(\boldsymbol{i}=0\) then return 0
    \(\boldsymbol{m}=\operatorname{LIS} \_\)smaller \((\boldsymbol{A}[1 . . \boldsymbol{i}-1], \boldsymbol{x})\)
    if \(A[i]<x\) then
        \(\boldsymbol{m}=\boldsymbol{m a x}(\boldsymbol{m}, 1+\) LIS_smaller \((\boldsymbol{A}[1 . . \boldsymbol{i}-1], \boldsymbol{A}[\boldsymbol{i}]))\)
    Output m
```

```
LIS(A[1..n]):
    return LIS_smaller (A[1..n], \infty)
```

- How many distinct sub-problems will LIS_smaller $(A[1 . . n], \infty)$ generate? $O\left(n^{2}\right)$
- What is the running time if we memoize recursion? $O\left(n^{2}\right)$ since each call takes $O(1)$ time to assemble the answers from to recursive calls and no other computation
- How much space for memoization? $O\left(n^{2}\right)$

Recursive Approach

```
LIS_smaller (A[1..i], \(\boldsymbol{x}\) ):
    if \(\boldsymbol{i}=0\) then return 0
    \(\boldsymbol{m}=\) LIS_smaller \((\boldsymbol{A}[1 . . \boldsymbol{i}-1], \boldsymbol{x})\)
    if \(\boldsymbol{A}[i]<x\) then
        \(\boldsymbol{m}=\boldsymbol{m a x}(\boldsymbol{m}, 1+\) LIS_smaller \((\boldsymbol{A}[1 . . \boldsymbol{i}-1], \boldsymbol{A}[\boldsymbol{i}]))\)
    Output m
```

```
LIS (A[1..n]):
    return LIS_smaller(A[1..n], \infty)
```

- How many distinct sub-problems will LIS_smaller $(A[1 . . n], \infty)$ generate? $O\left(n^{2}\right)$
- What is the running time if we memoize recursion? $O\left(n^{2}\right)$ since each call takes
$O(1)$ time to assemble the answers from to recursive calls and no other
computation.
- How much snace for memoization? $O\left(n^{2}\right)$

Recursive Approach

```
LIS_smaller (A[1..i], \(\boldsymbol{x}\) ):
    if \(\boldsymbol{i}=0\) then return 0
    \(\boldsymbol{m}=\operatorname{LIS} \_\)smaller \((\boldsymbol{A}[1 . . \boldsymbol{i}-1], \boldsymbol{x})\)
    if \(A[i]<x\) then
        \(\boldsymbol{m}=\boldsymbol{m a x}(\boldsymbol{m}, 1+\) LIS_smaller \((\boldsymbol{A}[1 . . \boldsymbol{i}-1], \boldsymbol{A}[\boldsymbol{i}]))\)
    Output m
```

```
LIS(A[1..n]):
    return LIS_smaller (A[1..n], \infty)
```

- How many distinct sub-problems will LIS_smaller $(A[1 . . n], \infty)$ generate? $O\left(n^{2}\right)$
- What is the running time if we memoize recursion? $O\left(n^{2}\right)$ since each call takes $\boldsymbol{O}(1)$ time to assemble the answers from to recursive calls and no other computation.
- How much space for memoization? $O\left(n^{2}\right)$

Recursive Approach

```
LIS_smaller (A[1..i], \(\boldsymbol{x}\) ):
    if \(\boldsymbol{i}=0\) then return 0
    \(\boldsymbol{m}=\) LIS_smaller \((\boldsymbol{A}[1 . . \boldsymbol{i}-1], \boldsymbol{x})\)
    if \(A[i]<x\) then
        \(\boldsymbol{m}=\boldsymbol{m a x}(\boldsymbol{m}, 1+\) LIS_smaller \((\boldsymbol{A}[1 . . \boldsymbol{i}-1], \boldsymbol{A}[\boldsymbol{i}]))\)
    Output m
```

```
LIS(A[1..n]):
    return LIS_smaller (A[1..n], \infty)
```

- How many distinct sub-problems will LIS_smaller $(A[1 . . n], \infty)$ generate? $O\left(n^{2}\right)$
- What is the running time if we memoize recursion? $O\left(n^{2}\right)$ since each call takes $\boldsymbol{O}(1)$ time to assemble the answers from to recursive calls and no other computation.
- How much space for memoization?

Recursive Approach

```
LIS_smaller (A[1..i], \(\boldsymbol{x}\) ):
    if \(\boldsymbol{i}=0\) then return 0
    \(\boldsymbol{m}=\) LIS_smaller \((\boldsymbol{A}[1 . . \boldsymbol{i}-1], \boldsymbol{x})\)
    if \(A[i]<x\) then
        \(\boldsymbol{m}=\boldsymbol{m a x}(\boldsymbol{m}, 1+\) LIS_smaller \((\boldsymbol{A}[1 . . \boldsymbol{i}-1], \boldsymbol{A}[\boldsymbol{i}]))\)
    Output m
```

$\operatorname{LIS}(A[1 . . n]):$
return LIS_smaller $(A[1 . . n], \infty)$

- How many distinct sub-problems will LIS_smaller $(A[1 . . n], \infty)$ generate? $O\left(n^{2}\right)$
- What is the running time if we memoize recursion? $O\left(n^{2}\right)$ since each call takes $\boldsymbol{O}(1)$ time to assemble the answers from to recursive calls and no other computation.
- How much space for memoization? $\boldsymbol{O}\left(\boldsymbol{n}^{2}\right)$

Naming subproblems and recursive equation

After seeing that number of subproblems is $O\left(n^{2}\right)$ we name them to help us understand the structure better. For notational ease we add ∞ at end of array (in position $\boldsymbol{n}+1$)
$\operatorname{LIS}(\boldsymbol{i}, \boldsymbol{j})$: length of longest increasing sequence in $\boldsymbol{A}[1 . . \boldsymbol{i}]$ among numbers less than $A[j]$ (defined only for $i<j$)

Base case: $\operatorname{LIS}(0, j)=0$ for $1 \leq \boldsymbol{j} \leq \boldsymbol{n}+1$
Recursive relation:

- $\operatorname{LIS}(i, j)=\operatorname{LIS}(i-1, j)$ if $A[i]>A[j]$
- $\operatorname{LIS}(i, j)=\max \{\operatorname{LIS}(i-1, j), 1+\operatorname{LIS}(i-1, i)\}$ if $A[i] \leq A[j]$

Output: $\operatorname{LIS}(\boldsymbol{n}, \boldsymbol{n}+1)$

Naming subproblems and recursive equation

After seeing that number of subproblems is $O\left(\boldsymbol{n}^{2}\right)$ we name them to help us understand the structure better. For notational ease we add ∞ at end of array (in position $\boldsymbol{n}+1$)
$\operatorname{LIS}(\boldsymbol{i}, \boldsymbol{j})$: length of longest increasing sequence in $\boldsymbol{A}[1 . . \boldsymbol{i}]$ among numbers less than $A[j]$ (defined only for $i<j$)

Base case: $\operatorname{LIS}(0, \boldsymbol{j})=0$ for $1 \leq \boldsymbol{j} \leq \boldsymbol{n}+1$ Recursive relation:

- $\operatorname{LIS}(\boldsymbol{i}, \boldsymbol{j})=\operatorname{LIS}(\boldsymbol{i}-1, \boldsymbol{j})$ if $\boldsymbol{A}[\boldsymbol{i}]>\boldsymbol{A}[\boldsymbol{j}]$
- $\operatorname{LIS}(\boldsymbol{i}, \boldsymbol{j})=\max \{\operatorname{LIS}(\boldsymbol{i}-1, \boldsymbol{j}), 1+\operatorname{LIS}(\boldsymbol{i}-1, \boldsymbol{i})\}$ if $A[i] \leq A[j]$

Output: $\operatorname{LIS}(\boldsymbol{n}, \boldsymbol{n}+1)$.

How to order bottom up computation?

Iterative algorithm

The dynamic program for longest increasing subsequence

```
LIS-Iterative ( \(\boldsymbol{A}[1 . . n])\) :
    \(\boldsymbol{A}[\boldsymbol{n}+1]=\infty\)
    int LIS[0..n,1..n +1\(]\)
    for \(\boldsymbol{j}=1 \ldots \boldsymbol{n}+1\) ) do \(\operatorname{LIS}[0, \boldsymbol{j}]=0\)
    for \(\boldsymbol{i}=1 \ldots \boldsymbol{n}\) ) do
        for \((\boldsymbol{j}=\boldsymbol{i}+1 \ldots \boldsymbol{n}\) do
        if \((A[i]>A[j])\)
            \(\operatorname{LIS}[\boldsymbol{i}, \boldsymbol{j}]=\operatorname{LIS}[\boldsymbol{i}-1, \boldsymbol{j}]\)
        else
            \(\operatorname{LIS}[\boldsymbol{i}, \boldsymbol{j}]=\max (\operatorname{LIS}[\boldsymbol{i}-1, \boldsymbol{j}], 1+\operatorname{LIS}[\boldsymbol{i}-1, \boldsymbol{i}])\)
    Return \(\operatorname{LIS}[\boldsymbol{n}, \boldsymbol{n}+1]\)
```

Running time: $O\left(n^{2}\right)$
Space: $O\left(n^{2}\right)$

Two comments

Question: Can we compute an optimum solution and not just its value?
res! see notes.

Question: Is there a faster algorithm for LIS? Yes! Using a different recursion and optimizing one can obtain an $O(n \log n)$ time and $O(n)$ space algorithm. $O(n \log n)$ time is not obvious. Depends on improving time by using data structures on top of dynamic programming.

Two comments

Question: Can we compute an optimum solution and not just its value? Yes! See notes.

Question: Is there a faster algorithm for LIS? Yes! Using a different recursion and optimizing one can obtain an $O(n \log n)$ time and $O(n)$ space algorithm. $O(n \log n)$ time is not obvious. Depends on improving time by using data structures on top of dynamic programming.

Two comments

Question: Can we compute an optimum solution and not just its value?
Yes! See notes.

Question: Is there a faster algorithm for LIS? Yes! Using a different recursion and optimizing one can obtain an $O(n \log n)$ time and $O(n)$ space algorithm. $O(n \log n)$ time is not obvious. Depends on improving time by using data structures on top of dynamic programming.

THE END

(for now)

