Algorithms \& Models of Computation

CS/ECE 374, Fall 2020

13.3

Checking if a string is in L^{*}

Problem

Input A string $\boldsymbol{w} \in \Sigma^{*}$ and access to a language $L \subseteq \Sigma^{*}$ via function Is $\operatorname{lnL}($ string $x)$ that decides whether x is in L
Goal Decide if $\boldsymbol{w} \in L^{*}$ using IsInL(string \boldsymbol{x}) as a black box sub-routine

Problem

Input A string $\boldsymbol{w} \in \Sigma^{*}$ and access to a language $L \subseteq \Sigma^{*}$ via function $\operatorname{Is} \operatorname{lnL}($ string $x)$ that decides whether x is in \bar{L}

Goal Decide if $w \in L^{*}$ using $\operatorname{Is} \operatorname{lnL}($ string $x)$ as a black box sub-routine

Problem

Input A string $\boldsymbol{w} \in \Sigma^{*}$ and access to a language $L \subseteq \Sigma^{*}$ via function $\operatorname{Is} \operatorname{lnL}($ string $x)$ that decides whether x is in L
*
Goal Decide if $\boldsymbol{w} \in L \quad$ using $\operatorname{Is} \operatorname{lnL}(\operatorname{string} \boldsymbol{x})$ as a black box sub-routine

Problem

Input A string $w \in \Sigma^{*}$ and access to a language $L \subseteq \Sigma^{*}$ via function $\operatorname{Is} \operatorname{lnL}($ string $x)$ that decides whether x is in L

Goal Decide if $w \in L$ sub-routine
using $\operatorname{Is} \operatorname{lnL}($ string $x)$ as a black box

Problem

Input A string $w \in \Sigma^{*}$ and access to a language $L \subseteq \Sigma^{*}$ via function IsInL(string x) that decides whether x is in L

Problem

Input A string $\boldsymbol{w} \in \Sigma^{*}$ and access to a language $L \subseteq \Sigma^{*}$ via function Is $\operatorname{lnL}($ string $x)$ that decides whether x is in L
Goal Decide if $\boldsymbol{w} \in L^{*}$ using IsInL(string \boldsymbol{x}) as a black box sub-routine

Problem

Input A string $w \in \Sigma^{*}$ and access to a language $L \subseteq \Sigma^{*}$ via function Is $\operatorname{lnL}($ string $x)$ that decides whether x is in L
Goal Decide if using IsInL(string x) as a black box sub-routine

Example 13.1.

Suppose L is English and we have a procedure to check whether a string/word is in the English dictionary.

- Is the string "isthisanenglishsentence" in English*?
- Is "stampstamp" in English*?
- Is "zibzzzad" in English*?

Recursive Solution

When is $w \in L^{*}$?

```
w}\in\mp@subsup{L}{}{*}\Longleftrightarroww\inL\mathrm{ or if w}=|v\mp@code{where }u\in\mp@subsup{L}{}{*}\mathrm{ and }v\inL,|v|\geq
```

Assume w is stored in array $A[1 \ldots n]$

```
IslnL*}(A[1..n])
    If (\boldsymbol{n}=0) Output YES
    If (IslnL(A[1..n]))
        Output YES
    El.se
        For (i=1 to n-1) do
            If IslnL*}(A[1..i]) and IslnL(A[i+1..n]
                Output YES
    Output NO
```


Recursive Solution

When is $w \in L^{*}$?

$$
w \in L^{*} \Longleftrightarrow w \in L \text { or if } w=\boldsymbol{u} v \text { where } \boldsymbol{u} \in \boldsymbol{L}^{*} \text { and } v \in L,|v| \geq 1 .
$$

Assume w is stored in array $A[1 . . n]$

```
|slnL*(A[1..n]):
    If ( }n=0\mathrm{ ) Output YES
    If (Is|nL(A[1..n]))
        Output YES
    Else
        For (i=1 to n-1) do 
        Output YES
    Output NO
```


Recursive Solution

When is $w \in L^{*}$?

$$
w \in L^{*} \Longleftrightarrow w \in L \text { or if } w=\boldsymbol{u} v \text { where } \boldsymbol{u} \in \boldsymbol{L}^{*} \text { and } \boldsymbol{v} \in L,|v| \geq 1 .
$$

Assume \boldsymbol{w} is stored in array $\boldsymbol{A}[1 . . \boldsymbol{n}]$

```
IslnL*
    If (n=0) Output YES
    If (IslnL(A[1..n]))
        Output YES
    Else
        For (i=1 to n-1) do
            If IslnL*}(\boldsymbol{A}[1..i]) and IsInL(A[i+1..n]
                Output YES
    Output NO
```


Recursive Solution

Assume \boldsymbol{w} is stored in array $\boldsymbol{A}[1 . . \boldsymbol{n}]$

```
\(\operatorname{Is} \ln L^{*}(A[1 . . n]):\)
    If \((\boldsymbol{n}=0)\) Output YES
    If (IslnL(A[1..n]))
        Output YES
    Else
        For ( \(\boldsymbol{i}=1\) to \(\boldsymbol{n}-1\) ) do
            If \(\operatorname{IslnL} L^{*}(A[1 . . i])\) and \(\operatorname{IsInL}(A[i+1 . . n])\)
                    Output YES
```

Output NO

Recursive Solution

Assume \boldsymbol{w} is stored in array $\boldsymbol{A}[1 . . \boldsymbol{n}]$

```
IslnL*}(A[1..n])
    If (n=0) Output YES
    If (IslnL(A[1..n]))
        Output YES
    Else
        For (i=1 to n-1) do
            If IsInL**(A[1..i]) and IsInL(A[i+1..n])
                Output YES
```

Output NO
Question: How many distinct sub-problems does IsInL* $(\boldsymbol{A}[1 . . n])$ generate?

Recursive Solution

Assume \boldsymbol{w} is stored in array $\boldsymbol{A}[1 . . \boldsymbol{n}]$

```
IslnL*}(A[1..n])
    If (n=0) Output YES
    If (IslnL(A[1..n]))
        Output YES
    Else
        For (i=1 to n-1) do
            If IsInL**(A[1..i]) and IsInL(A[i+1..n])
                Output YES
```

Output NO
Question: How many distinct sub-problems does IsInL* $(A[1 . . n])$ generate? $O(n)$

Example

Consider string samiam

Naming subproblems and recursive equation

After seeing that number of subproblems is $\boldsymbol{O}(\mathrm{n})$ we name them to help us understand the structure better.

ISL* (i) : a boolean which is 1 if $A[1 . . i]$ is in $L^{*}, 0$ otherwise

Base case: $\operatorname{ISL}^{*}(0)=1$ interpreting $\boldsymbol{A}[1 . .0]$ as $\boldsymbol{\epsilon}$ Recursive relation:

- ISL* $^{*}(\boldsymbol{i})=1$ if $\exists j, 0 \leq j<i$ s.t ISL* (j) and $\operatorname{IsInL}(A[j+1 . . i])$
- ISL* $(i)=0$ otherwise

Output: ISL* (n)

Naming subproblems and recursive equation

After seeing that number of subproblems is $\boldsymbol{O}(\mathrm{n})$ we name them to help us understand the structure better.

ISL* (i) : a boolean which is 1 if $A[1 . . i]$ is in $L^{*}, 0$ otherwise

Base case: $\operatorname{ISL}^{*}(0)=1$ interpreting $\boldsymbol{A}[1 . .0]$ as $\boldsymbol{\epsilon}$ Recursive relation:

- $\operatorname{ISL}^{*}(\boldsymbol{i})=1$ if $\exists j, 0 \leq j<i$ s.t $\mathrm{ISL}^{*}(j)$ and $\operatorname{Is} \operatorname{lnL}(A[j+1 . . i])$
- ISL* $(\boldsymbol{i})=0$ otherwise

Output: ISL*(n)

Naming subproblems and recursive equation

After seeing that number of subproblems is $\boldsymbol{O}(\mathrm{n})$ we name them to help us understand the structure better.

ISL* (i) : a boolean which is 1 if $A[1 . . i]$ is in $L^{*}, 0$ otherwise

Base case: $\operatorname{ISL}^{*}(0)=1$ interpreting $\boldsymbol{A}[1 . .0]$ as $\boldsymbol{\epsilon}$ Recursive relation:

- $\operatorname{ISL}^{*}(\boldsymbol{i})=1$ if $\exists j, 0 \leq j<i$ s.t $\operatorname{ISL}^{*}(j)$ and $\operatorname{IsInL}(A[j+1 . . i])$
- ISL* $(\boldsymbol{i})=0$ otherwise

Output: ISL* (n)

Removing recursion to obtain iterative algorithm

Typically, after finding a dynamic programming recursion, we often convert the recursive algorithm into an iterative algorithm via explicit memoization and bottom up computation.

Why? Mainly for further optimization of running time and space

- First, allocate a data structure (usually an array or a multi-dimensional array that can hold values for each of the subproblems)
- Figure out a way to order the computation of the sub-problems starting from the base case

Caveat: Dynamic programming is not about filling tables. It is about finding a smart recursion. First, find the correct recursion.

Removing recursion to obtain iterative algorithm

Typically, after finding a dynamic programming recursion, we often convert the recursive algorithm into an iterative algorithm via explicit memoization and bottom up computation.

Why? Mainly for further optimization of running time and space.

- First, allocate a data structure (usually an array or a multi-dimensional array that can hold values for each of the subproblems)
- Figure out a way to order the computation of the sub-problems starting from the base case

Caveat: Dynamic programming is not about filling tables. It is about finding a smart recursion. First, find the correct recursion.

Removing recursion to obtain iterative algorithm

Typically, after finding a dynamic programming recursion, we often convert the recursive algorithm into an iterative algorithm via explicit memoization and bottom up computation.

Why? Mainly for further optimization of running time and space.

How?

- First, allocate a data structure (usually an array or a multi-dimensional array that can hold values for each of the subproblems)
- Figure out a way to order the computation of the sub-problems starting from the base case.

Caveat: Dynamic programming is not about filling tables. It is about finding a smart recursion. First, find the correct recursion.

Removing recursion to obtain iterative algorithm

Typically, after finding a dynamic programming recursion, we often convert the recursive algorithm into an iterative algorithm via explicit memoization and bottom up computation.

Why? Mainly for further optimization of running time and space.
How?

- First, allocate a data structure (usually an array or a multi-dimensional array that can hold values for each of the subproblems)
- Figure out a way to order the computation of the sub-problems starting from the base case.
Caveat: Dynamic programming is not about filling tables. It is about finding a smart recursion. First, find the correct recursion.

Iterative Algorithm

```
IsStringinLstar-Iterative(A[1..n]):
    boolean ISL*[0..(n+1)]
    ISL*[0] = TRUE
    for i=1 to n do
        for j=0 to i-1 do
            if (ISL*[j] and IsInL(A[j+1..i]))
                ISL*[i] = TRUE
                break
if (ISL*[n] = 1) Output YES
else Output NO
```

- Running time: $O\left(n^{2}\right)$ (assuming call to IslnL is $O(1)$ time)
- Space: $O(n)$

Iterative Algorithm

```
IsStringinLstar-Iterative(A[1..n]):
    boolean ISL*[0..(n+1)]
    ISL*[0] = TRUE
    for i=1 to n do
        for j=0 to i-1 do
            if (ISL*[j] and IsInL(A[j+1..i]))
                ISL*[i] = TRUE
                break
if (ISL*[n] = 1) Output YES
else Output NO
```

- Running time: $O\left(n^{2}\right)$ (assuming call to IsInL is $O(1)$ time)
- Space: O(n)

Iterative Algorithm

```
IsStringinLstar-Iterative(A[1..n]):
    boolean ISL*[0..(n+1)]
    ISL*[0] = TRUE
    for i=1 to n do
        for j=0 to i-1 do
            if (ISL*[j] and IsInL(A[j+1..i]))
                ISL*[i] = TRUE
                break
if (ISL*[n]=1) Output YES
else Output NO
```

- Running time: $O\left(\boldsymbol{n}^{2}\right)$ (assuming call to IslnL is $\boldsymbol{O}(1)$ time)
- Space: $O(n)$

Iterative Algorithm

```
IsStringinLstar-Iterative(A[1..n]):
    boolean ISL*[0..(n+1)]
ISL*[0] = TRUE
for i=1 to n do
        for j=0 to i-1 do
            if (ISL*[j] and IsInL(A[j+1..i]))
                ISL*[i] = TRUE
                break
if (ISL*[n] = 1) Output YES
else Output NO
```

- Running time: $O\left(\boldsymbol{n}^{2}\right)$ (assuming call to IslnL is $\boldsymbol{O}(1)$ time)
- Space:

Iterative Algorithm

```
IsStringinLstar-Iterative(A[1..n]):
    boolean ISL*[0..(n+1)]
ISL*[0] = TRUE
for i=1 to n do
        for j=0 to i-1 do
            if (ISL*[j] and IsInL(A[j+1..i]))
                ISL*[i] = TRUE
                break
if (ISL*[n] = 1) Output YES
else Output NO
```

- Running time: $O\left(\boldsymbol{n}^{2}\right)$ (assuming call to IsInL is $O(1)$ time)
- Space: $O(n)$

Example

Consider string samiam

THE END

(for now)

