12.3.2

A recursive algorithm for Max Independent Set in a Graph

A Recursive Algorithm

Let $\boldsymbol{V}=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$.
For a vertex \boldsymbol{u} let $\boldsymbol{N}(\boldsymbol{u})$ be its neighbors.

Observation

```
v}\mp@subsup{v}{1}{}\mathrm{ : vertex in the graph.
One of the following two cases is true
    Case 1 v}\mp@subsup{v}{1}{}\mathrm{ is in some maximum independent set.
    Case 2 v}\mp@subsup{v}{1}{}\mathrm{ is in no maximum independent set
```

We can try both cases to "reduce" the size of the problem

A Recursive Algorithm

Let $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$.
For a vertex \boldsymbol{u} let $\boldsymbol{N}(\boldsymbol{u})$ be its neighbors.

Observation

\boldsymbol{v}_{1} : vertex in the graph.
One of the following two cases is true
Case $1 \boldsymbol{v}_{1}$ is in some maximum independent set.
Case $2 \boldsymbol{v}_{1}$ is in no maximum independent set.
We can try both cases to "reduce" the size of the problem

Removing a vertex (say 5)

Because it is NOT in the independent set

Removing a vertex (say 5)

Because it is NOT in the independent set

Removing a vertex (say 5) and its neighbors

Because it is in the independent set

Removing a vertex (say 5) and its neighbors

Because it is in the independent set

A Recursive Algorithm: The two possibilities

$G_{1}=G-v_{1}$ obtained by removing v_{1} and incident edges from G $G_{2}=G-v_{1}-N\left(v_{1}\right)$ obtained by removing $N\left(v_{1}\right) \cup v_{1}$ from G

$$
\operatorname{MIS}(G)=\max \left\{\operatorname{MIS}\left(G_{1}\right), \operatorname{MIS}\left(G_{2}\right)+w\left(v_{1}\right)\right\}
$$

A Recursive Algorithm

RecursiveMIS(G):

if \boldsymbol{G} is empty then Output 0
$a=\operatorname{RecursiveMIS}\left(G-v_{1}\right)$
$\boldsymbol{b}=\boldsymbol{w}\left(\boldsymbol{v}_{1}\right)+\operatorname{RecursiveMIS}\left(\boldsymbol{G}-\boldsymbol{v}_{1}-\boldsymbol{N}\left(\boldsymbol{v}_{\boldsymbol{n}}\right)\right)$
Output $\max (\boldsymbol{a}, \boldsymbol{b})$

Example

Recursive Algorithms

for Maximum Independent Set

Running time:

$$
T(n)=T(n-1)+T\left(n-1-\operatorname{deg}\left(v_{1}\right)\right)+O\left(1+\operatorname{deg}\left(v_{1}\right)\right)
$$

where $\operatorname{deg}\left(\boldsymbol{v}_{1}\right)$ is the degree of $\boldsymbol{v}_{1} . \boldsymbol{T}(0)=\boldsymbol{T}(1)=1$ is base case.
Worst case is when $\operatorname{deg}\left(\boldsymbol{v}_{1}\right)=0$ when the recurrence becomes

$$
T(n)=2 T(n-1)+O(1)
$$

Solution to this is $\boldsymbol{T}(\boldsymbol{n})=\boldsymbol{O}\left(2^{n}\right)$.

Backtrack Search via Recursion

(1) Recursive algorithm generates a tree of computation where each node is a smaller problem (subproblem)
(2) Simple recursive algorithm computes/explores the whole tree blindly in some order.
(0) Backtrack search is a way to explore the tree intelligently to prune the search space
(1) Some subproblems may be so simple that we can stop the recursive algorithm and solve it directly by some other method
(2) Memoization to avoid recomputing same problem
(3) Stop the recursion at a subproblem if it is clear that there is no need to explore further.
(1) Leads to a number of heuristics that are widely used in practice although the worst case running time may still be exponential.

THE END

(for now)

