11.2
 Multiplication using Divide and Conquer

Divide and Conquer

Assume \boldsymbol{n} is a power of $\mathbf{2}$ for simplicity and numbers are in decimal.
Split each number into two numbers with equal number of digits
(1) $b=b_{n-1} b_{n-2} \ldots b_{0}$ and $c=c_{n-1} c_{n-2} \ldots c_{0}$
(2) $b=b_{n-1} \ldots b_{n / 2} 0 \ldots 0+b_{n / 2-1} \ldots b_{0}$
(3) $b(x)=b_{L} x+b_{R}$, where $x=10^{n / 2}, b_{L}=b_{n-1} \ldots b_{n / 2}$ and $b_{R}=b_{n / 2-1} \ldots b_{0}$
(1) Similarly $c(x)=c_{L} x+c_{R}$ where $c_{L}=c_{n-1} \ldots c_{n / 2}$ and $c_{R}=c_{n / 2-1} \ldots c_{0}$

Example

$$
\begin{aligned}
1234 \times 5678 & =(12 x+34) \times(56 x+78) \\
& =12 \cdot 56 \cdot x^{2}+(12 \cdot 78+34 \cdot 56) x+34 \cdot 78 .
\end{aligned}
$$

$$
1234 \times 5678=(100 \times 12+34) \times(100 \times 56+78)
$$

$$
=10000 \times 12 \times 56
$$

$$
+100 \times(12 \times 78+34 \times 56)
$$

$$
+34 \times 78
$$

Divide and Conquer for multiplication

Assume \boldsymbol{n} is a power of $\mathbf{2}$ for simplicity and numbers are in decimal.
(1) $b=b_{n-1} b_{n-2} \ldots b_{0}$ and $c=c_{n-1} c_{n-2} \ldots c_{0}$
(2) $b \equiv b(x)=b_{L} x+b_{R}$
where $x=10^{n / 2}, b_{L}=b_{n-1} \ldots b_{n / 2}$ and $b_{R}=b_{n / 2-1} \ldots b_{0}$
(0) $c \equiv c(x)=c_{L} x+c_{R}$ where $c_{L}=c_{n-1} \ldots c_{n / 2}$ and $c_{R}=c_{n / 2-1} \ldots c_{0}$

Therefore, for $x=10^{n / 2}$, we have

Divide and Conquer for multiplication

Assume \boldsymbol{n} is a power of $\mathbf{2}$ for simplicity and numbers are in decimal.
(1) $b=b_{n-1} b_{n-2} \ldots b_{0}$ and $c=c_{n-1} c_{n-2} \ldots c_{0}$
(2) $b \equiv b(x)=b_{L} x+b_{R}$
where $x=10^{n / 2}, b_{L}=b_{n-1} \ldots b_{n / 2}$ and $b_{R}=b_{n / 2-1} \ldots b_{0}$
($c \equiv c(x)=c_{L} x+c_{R}$ where $c_{L}=c_{n-1} \ldots c_{n / 2}$ and $c_{R}=c_{n / 2-1} \ldots c_{0}$
Therefore, for $\boldsymbol{x}=\mathbf{1 0} \mathbf{0}^{n / 2}$, we have

$$
\begin{aligned}
b c & =b(x) c(x)=\left(b_{L} x+b_{R}\right)\left(c_{L} x+c_{R}\right) \\
& =b_{L} c_{L} x^{2}+\left(b_{L} c_{R}+b_{R} c_{L}\right) x+b_{R} c_{R} \\
& =\mathbf{1 0}^{n} b_{L} c_{L}+\mathbf{1 0}^{n / 2}\left(b_{L} c_{R}+b_{R} c_{L}\right)+b_{R} c_{R}
\end{aligned}
$$

Time Analysis

$$
b c=10^{n} b_{L} c_{L}+10^{n / 2}\left(b_{L} c_{R}+b_{R} c_{L}\right)+b_{R} c_{R}
$$

4 recursive multiplications of number of size $\boldsymbol{n} / \mathbf{2}$ each plus 4 additions and left shifts (adding enough 0 's to the right)

$\boldsymbol{T}(\boldsymbol{n})=\Theta\left(\boldsymbol{n}^{2}\right)$. No better than grade school multiplication!

Time Analysis

$$
b c=10^{n} b_{L} c_{L}+10^{n / 2}\left(b_{L} c_{R}+b_{R} c_{L}\right)+b_{R} c_{R}
$$

4 recursive multiplications of number of size $\boldsymbol{n} / \mathbf{2}$ each plus 4 additions and left shifts (adding enough 0 's to the right)

$$
T(n)=4 T(n / 2)+O(n) \quad T(1)=O(1)
$$

$T(n)=\Theta\left(n^{2}\right)$. No better than grade school multiplication!

Time Analysis

$$
b c=10^{n} b_{L} c_{L}+10^{n / 2}\left(b_{L} c_{R}+b_{R} c_{L}\right)+b_{R} c_{R}
$$

4 recursive multiplications of number of size $\boldsymbol{n} / 2$ each plus 4 additions and left shifts (adding enough 0's to the right)

$$
T(n)=4 T(n / 2)+O(n) \quad T(1)=O(1)
$$

$\boldsymbol{T}(\boldsymbol{n})=\Theta\left(\boldsymbol{n}^{2}\right)$. No better than grade school multiplication!

THE END

(for now)

