Algorithms & Models of Computation CS/ECE 374, Fall 2020

10.9 Solving Recurrences

Solving Recurrences

Two general methods:

- Recursion tree method: need to do sums
 - elementary methods, geometric series
 - integration
- Q Guess and Verify
 - **o** guessing involves intuition, experience and trial & error
 - verification is via induction

Recurrence: Example I

• Consider $T(n) = 2T(n/2) + n/\log n$ for n > 2, T(2) = 1.

Construct recursion tree, and observe pattern. *i*th level has 2ⁱ nodes, and problem size at each node is n/2ⁱ and hence work at each node is n/2ⁱ/log n/2ⁱ.
Summing over all levels

$$T(n) = \sum_{i=0}^{\log n-1} 2^i \left[\frac{(n/2^i)}{\log(n/2^i)} \right]$$
$$= \sum_{i=0}^{\log n-1} \frac{n}{\log n-i}$$
$$= n \sum_{j=1}^{\log n} \frac{1}{j} = n H_{\log n} = \Theta(n \log \log n)$$

Recurrence: Example I

- Consider $T(n) = 2T(n/2) + n/\log n$ for n > 2, T(2) = 1.
- **2** Construct recursion tree, and observe pattern. *i*th level has 2^i nodes, and problem size at each node is $n/2^i$ and hence work at each node is $\frac{n}{2^i}/\log \frac{n}{2^i}$.
- Summing over all levels

$$T(n) = \sum_{i=0}^{\log n-1} 2^i \left[\frac{(n/2^i)}{\log(n/2^i)} \right]$$
$$= \sum_{i=0}^{\log n-1} \frac{n}{\log n-i}$$
$$= n \sum_{j=1}^{\log n} \frac{1}{j} = n H_{\log n} = \Theta(n \log \log n)$$

Recurrence: Example II

- **(**) Consider $T(n) = T(\sqrt{n}) + 1$ for n > 2, T(2) = 1.
- **(a)** What is the depth of recursion? $\sqrt{n}, \sqrt{\sqrt{n}}, \sqrt{\sqrt{n}}, \dots, O(1)$.
- 3 Number of levels: $n^{2^{-L}} = 2$ means $L = \log \log n$.
- Number of children at each level is 1, work at each node is 1
- Thus, $T(n) = \sum_{i=0}^{L} 1 = \Theta(L) = \Theta(\log \log n)$.

Recurrence: Example II

- **(**) Consider $T(n) = T(\sqrt{n}) + 1$ for n > 2, T(2) = 1.
- **2** What is the depth of recursion? $\sqrt{n}, \sqrt{\sqrt{n}}, \sqrt{\sqrt{n}}, \dots, O(1)$.
- Solution Number of levels: $n^{2^{-L}} = 2$ means $L = \log \log n$.
- Number of children at each level is 1, work at each node is 1
- Thus, $T(n) = \sum_{i=0}^{L} 1 = \Theta(L) = \Theta(\log \log n)$.

Recurrence: Example III

- Consider $T(n) = \sqrt{n}T(\sqrt{n}) + n$ for n > 2, T(2) = 1.
- Using recursion trees: number of levels L = log log n
- (a) Work at each level? Root is n, next level is $\sqrt{n} \times \sqrt{n} = n$. Can check that each level is n.
- Thus, $T(n) = \Theta(n \log \log n)$

Recurrence: Example III

- Consider $T(n) = \sqrt{n}T(\sqrt{n}) + n$ for n > 2, T(2) = 1.
- **2** Using recursion trees: number of levels $L = \log \log n$
- Work at each level? Root is n, next level is $\sqrt{n} \times \sqrt{n} = n$. Can check that each level is n.
- Thus, $T(n) = \Theta(n \log \log n)$

Recurrence: Example IV

• Consider T(n) = T(n/4) + T(3n/4) + n for n > 4. T(n) = 1 for $1 \le n \le 4$.

- Using recursion tree, we observe the tree has leaves at different levels (a <u>lop-sided</u> tree).
- Total work in any level is at most *n*. Total work in any level without leaves is exactly *n*.
- I Highest leaf is at level $\log_4 n$ and lowest leaf is at level $\log_{4/3} n$
- Thus, $\boldsymbol{n} \log_4 \boldsymbol{n} \leq \boldsymbol{T}(\boldsymbol{n}) \leq \boldsymbol{n} \log_{4/3} \boldsymbol{n}$, which means $\boldsymbol{T}(\boldsymbol{n}) = \Theta(\boldsymbol{n} \log \boldsymbol{n})$

Recurrence: Example IV

() Consider T(n) = T(n/4) + T(3n/4) + n for n > 4. T(n) = 1 for $1 \le n \le 4$.

- Using recursion tree, we observe the tree has leaves at different levels (a <u>lop-sided</u> tree).
- Total work in any level is at most n. Total work in any level without leaves is exactly n.
- **(**) Highest leaf is at level $\log_4 n$ and lowest leaf is at level $\log_{4/3} n$
- Thus, $n \log_4 n \leq T(n) \leq n \log_{4/3} n$, which means $T(n) = \Theta(n \log n)$

THE END

(for now)

. . .