10.9

Solving Recurrences

Solving Recurrences

Two general methods:
(1) Recursion tree method: need to do sums
(1) elementary methods, geometric series
(2) integration
(2) Guess and Verify
(1) guessing involves intuition, experience and trial \& error
(2) verification is via induction

Recurrence: Example I

(1) Consider $\boldsymbol{T}(\boldsymbol{n})=\mathbf{2 T}(\boldsymbol{n} / \mathbf{2})+\boldsymbol{n} / \log \boldsymbol{n}$ for $\boldsymbol{n}>\mathbf{2}, \boldsymbol{T}(\mathbf{2})=\mathbf{1}$.
(3) Construct recursion tree, and observe pattern. ith level has 2^{\prime} nodes, and problem size at each node is $n / 2^{i}$ and hence work at each node is $\frac{n}{2^{i}} / \log \frac{n}{2^{i}}$
© Summing over all levels

Recurrence: Example I

(1) Consider $\boldsymbol{T}(\boldsymbol{n})=\mathbf{2 T}(\boldsymbol{n} / \mathbf{2})+\boldsymbol{n} / \log \boldsymbol{n}$ for $\boldsymbol{n}>\mathbf{2}, \boldsymbol{T}(\mathbf{2})=\mathbf{1}$.
(2) Construct recursion tree, and observe pattern. ith level has 2^{i} nodes, and problem size at each node is $\boldsymbol{n} / \mathbf{2}^{i}$ and hence work at each node is $\frac{n}{2^{i}} / \log \frac{n}{2^{i}}$.
(0) Summing over all levels

$$
\begin{aligned}
\boldsymbol{T}(n) & =\sum_{i=0}^{\log n-1} 2^{i}\left[\frac{\left(n / 2^{i}\right)}{\log \left(n / 2^{i}\right)}\right] \\
& =\sum_{i=0}^{\log n-1} \frac{n}{\log n-i} \\
& =n \sum_{j=1}^{\log n} \frac{1}{j}=n H_{\log n}=\Theta(n \log \log n)
\end{aligned}
$$

Recurrence: Example II

(1) Consider $\boldsymbol{T}(n)=T(\sqrt{n})+1$ for $n>2, T(2)=1$.
(2) What is the depth of recursion? $\sqrt{n}, \sqrt{\sqrt{n}}, \sqrt{\sqrt{n}}, \ldots, O(1)$
(3) Number of levels: $n^{2^{-L}}=2$ means $L=\log \log n$.
(9) Number of children at each level is $\mathbf{1}$, work at each node is 1
(3) Thus, $\boldsymbol{T}(\boldsymbol{n})=\sum_{i=0}^{L} 1=\Theta(L)=\Theta(\log \log n)$

Recurrence: Example II

(1) Consider $\boldsymbol{T}(n)=T(\sqrt{n})+1$ for $n>2, T(2)=1$.
(2) What is the depth of recursion? $\sqrt{n}, \sqrt{\sqrt{n}}, \sqrt{\sqrt{\sqrt{n}}}, \ldots, \boldsymbol{O}(\mathbf{1})$.
(3) Number of levels: $\boldsymbol{n}^{\mathbf{2}^{-L}}=\mathbf{2}$ means $\boldsymbol{L}=\log \log \boldsymbol{n}$.
(- Number of children at each level is $\mathbf{1}$, work at each node is $\mathbf{1}$
(0) Thus, $\boldsymbol{T}(n)=\sum_{i=0}^{L} \mathbf{1}=\Theta(\boldsymbol{L})=\Theta(\log \log n)$.

Recurrence: Example III

(1) Consider $\boldsymbol{T}(\boldsymbol{n})=\sqrt{\boldsymbol{n}} \boldsymbol{T}(\sqrt{\boldsymbol{n}})+\boldsymbol{n}$ for $\boldsymbol{n}>\mathbf{2 , T} \boldsymbol{T}(\mathbf{2})=\mathbf{1}$.
(3) Using recursion trees: number of levels $L=\log \log n$
((Work at each level? Root is \boldsymbol{n}, next level is $\sqrt{\boldsymbol{n}} \times \sqrt{\boldsymbol{n}}=\boldsymbol{n}$. Can check that each level is \boldsymbol{n}.
© Thus, $T(n)=\Theta(n \log \log n)$

Recurrence: Example III

(1) Consider $\boldsymbol{T}(\boldsymbol{n})=\sqrt{\boldsymbol{n}} \boldsymbol{T}(\sqrt{\boldsymbol{n}})+\boldsymbol{n}$ for $\boldsymbol{n}>2, T(2)=1$.
(2) Using recursion trees: number of levels $L=\log \log n$
(3) Work at each level? Root is \boldsymbol{n}, next level is $\sqrt{\boldsymbol{n}} \times \sqrt{\boldsymbol{n}}=\boldsymbol{n}$. Can check that each level is \boldsymbol{n}.
(- Thus, $\boldsymbol{T}(\boldsymbol{n})=\Theta(\boldsymbol{n} \log \log \boldsymbol{n})$

Recurrence: Example IV

(1) Consider $\boldsymbol{T}(\boldsymbol{n})=\boldsymbol{T}(\boldsymbol{n} / 4)+\boldsymbol{T}(\mathbf{3 n} / 4)+\boldsymbol{n}$ for $\boldsymbol{n}>\mathbf{4}$. $\boldsymbol{T}(\boldsymbol{n})=\mathbf{1}$ for $\mathbf{1} \leq \boldsymbol{n} \leq \mathbf{4}$.
© Using recursion tree, we observe the tree has leaves at different levels (a lop-sided tree)

- Total work in any level is at most n. Total work in any level without leaves is exactly n
- Highest leaf is at level $\log _{4} n$ and lowest leaf is at level $\log _{4 / 3} n$
- Thus, $\boldsymbol{n} \log _{4} \boldsymbol{n} \leq \boldsymbol{T}(\boldsymbol{n}) \leq \boldsymbol{n} \log _{4 / 3} \boldsymbol{n}$, which means $\boldsymbol{T}(\boldsymbol{n})=\Theta(\boldsymbol{n} \log n)$

Recurrence: Example IV

(1) Consider $\boldsymbol{T}(\boldsymbol{n})=\boldsymbol{T}(\boldsymbol{n} / 4)+\boldsymbol{T}(\mathbf{3 n} / 4)+\boldsymbol{n}$ for $\boldsymbol{n}>\mathbf{4}$. $\boldsymbol{T}(\boldsymbol{n})=\mathbf{1}$ for $\mathbf{1} \leq \boldsymbol{n} \leq 4$.
(3) Using recursion tree, we observe the tree has leaves at different levels (a lop-sided tree).
(3) Total work in any level is at most \boldsymbol{n}. Total work in any level without leaves is exactly n.
(- Highest leaf is at level $\log _{4} n$ and lowest leaf is at level $\log _{4 / 3} n$
(- Thus, $\boldsymbol{n} \log _{4} \boldsymbol{n} \leq \boldsymbol{T}(\boldsymbol{n}) \leq \boldsymbol{n} \log _{4 / 3} \boldsymbol{n}$, which means $\boldsymbol{T}(\boldsymbol{n})=\Theta(\boldsymbol{n} \log \boldsymbol{n})$

THE END

(for now)

