Algorithms & Models of Computation CS/ECE 374, Fall 2020

10.6.1 Proving that merge is correct

Proving Correctness

Obvious way to prove correctness of recursive algorithm: induction!

- Easy to show by induction on *n* that MergeSort is correct if you assume Merge is correct.
- How do we prove that Merge is correct? Also by induction!
- One way is to rewrite Merge into a recursive version.
- For algorithms with loops one comes up with a natural <u>loop invariant</u> that captures all the essential properties and then we prove the loop invariant by induction on the index of the loop.

Obvious way to prove correctness of recursive algorithm: induction!

- Easy to show by induction on *n* that MergeSort is correct if you assume Merge is correct.
- How do we prove that Merge is correct? Also by induction!
- One way is to rewrite Merge into a recursive version.
- For algorithms with loops one comes up with a natural <u>loop invariant</u> that captures all the essential properties and then we prove the loop invariant by induction on the index of the loop.

Merge is correct..

$$\begin{array}{l} \operatorname{\mathsf{Merge}}(A[1...m], A[m+1...n]) \\ i \leftarrow 1, \ j \leftarrow m+1, \ k \leftarrow 1 \\ \text{while} \ (\ k \leq n \) \ \text{do} \\ \text{if} \ i > m \ \text{or} \ (j \leq n \ \text{and} \ A[i] > A[j]) \\ B[k++] \leftarrow A[j++] \\ \text{else} \\ B[k++] \leftarrow A[i++] \\ A \leftarrow B \end{array}$$

Claim

Assuming A[1...m] and A[m + 1...n] are sorted (all values distinct). For any value of k, in the beginning of the loop, we have:

0
$$B[1...k-1]$$
 contains the $k-1$ smallest elements in A

3 B[1...k - 1] is sorted.

Merge is correct...

$$\begin{array}{l} \operatorname{\mathsf{Merge}}(A[1...m], A[m+1...n]) \\ i \leftarrow 1, \ j \leftarrow m+1, \ k \leftarrow 1 \\ \text{while} \ (\ k \leq n \) \ \operatorname{\mathsf{do}} \\ \text{ if } \ i > m \ \operatorname{or} \ (j \leq n \ \operatorname{and} \ A[i] > A[j]) \\ B[k++] \leftarrow A[j++] \\ \text{ else} \\ B[k++] \leftarrow A[i++] \\ A \leftarrow B \end{array}$$

Claim

Assuming A[1...m] and A[m + 1...n] are sorted (all values distinct). For any value of k, in the beginning of the loop, we have:

0
$$B[1...k-1]$$
 contains the $k-1$ smallest elements in A .

2 B[1...k-1] is sorted.

```
\begin{array}{l} \operatorname{Merge}(A[1...m], A[m+1...n])\\ i \leftarrow 1, \ j \leftarrow m+1, \ k \leftarrow 1\\ \text{while } (\ k \leq n \ ) \ \text{do}\\ \text{ if } i > m \ \text{or } (j \leq n \ \text{and} \ A[i] > A[j])\\ B[k++] \leftarrow A[j++]\\ \text{ else}\\ B[k++] \leftarrow A[i++]\\ A \leftarrow B \end{array}
```

Proof:

Claim

Assuming A[1...m] and A[m + 1...n] are sorted (all values distinct).
∀k, in beginning of the loop, we have:
B[1...k - 1]: k - 1 smallest elements in A.
B[1...k - 1] is sorted.

```
\begin{array}{l} \operatorname{Merge}(A[1...m], A[m+1...n])\\ i \leftarrow 1, \ j \leftarrow m+1, \ k \leftarrow 1\\ \text{while } (\ k \leq n \ ) \ \text{do}\\ \text{ if } i > m \ \text{or } (j \leq n \ \text{and} \ A[i] > A[j])\\ B[k++] \leftarrow A[j++]\\ \text{ else}\\ B[k++] \leftarrow A[i++]\\ A \leftarrow B \end{array}
```

Assuming A[1...m] and A[m + 1...n] are sorted (all values distinct).
∀k, in beginning of the loop, we have:
B[1...k - 1]: k - 1 smallest elements in A.
B[1...k - 1] is sorted.

Proof:

Base of induction: k = 1: Emptily true.

```
\begin{array}{l} \operatorname{Merge}(A[1...m], A[m+1...n])\\ i \leftarrow 1, \ j \leftarrow m+1, \ k \leftarrow 1\\ \text{while } (\ k \leq n \ ) \ \text{do}\\ \text{ if } i > m \ \text{or } (j \leq n \ \text{and} \ A[i] > A[j])\\ B[k++] \leftarrow A[j++]\\ \text{ else}\\ B[k++] \leftarrow A[i++]\\ A \leftarrow B \end{array}
```

Assuming A[1...m] and A[m + 1...n] are sorted (all values distinct).
∀k, in beginning of the loop, we have:
B[1...k - 1]: k - 1 smallest elements in A.
B[1...k - 1] is sorted.

Proof:

Inductive hypothesis: Claim true for all $k \leq \alpha$.

```
\begin{array}{l} \operatorname{Merge}(A[1...m], A[m+1...n])\\ i \leftarrow 1, \ j \leftarrow m+1, \ k \leftarrow 1\\ \text{while } (\ k \leq n \ ) \ \text{do}\\ \text{ if } i > m \ \text{or } (j \leq n \ \text{and} \ A[i] > A[j])\\ B[k++] \leftarrow A[j++]\\ \text{ else}\\ B[k++] \leftarrow A[i++]\\ A \leftarrow B \end{array}
```

Assuming A[1...m] and A[m + 1...n] are sorted (all values distinct).
∀k, in beginning of the loop, we have:
B[1...k - 1]: k - 1 smallest elements in A.
B[1...k - 1] is sorted.

Proof:

Inductive hypothesis: Claim true for all $k \leq \alpha$. **Inductive step**: Need to prove claim true for $k = \alpha + 1$.

```
\begin{array}{l} \operatorname{Merge}(A[1...m], A[m+1...n])\\ i \leftarrow 1, \ j \leftarrow m+1, \ k \leftarrow 1\\ \text{while } (\ k \leq n \ ) \ \text{do}\\ \text{ if } i > m \ \text{or } (j \leq n \ \text{and} \ A[i] > A[j])\\ B[k++] \leftarrow A[j++]\\ \text{ else}\\ B[k++] \leftarrow A[i++]\\ A \leftarrow B \end{array}
```

Assuming A[1...m] and A[m + 1...n] are sorted (all values distinct).
∀k, in beginning of the loop, we have:
B[1...k - 1]: k - 1 smallest elements in A.
B[1...k - 1] is sorted.

Inductive hypothesis: Claim true for all $k \leq \alpha$.

Idea: Start at iteration $\mathbf{k} = \boldsymbol{\alpha}$, and use induction hypothesis, run the loop for one iter...

```
\begin{array}{l} \operatorname{Merge}(A[1...m], A[m+1...n])\\ i \leftarrow 1, \ j \leftarrow m+1, \ k \leftarrow 1\\ \text{while } (\ k \leq n \ ) \ \text{do}\\ \quad \text{if } i > m \ \text{or } (j \leq n \ \text{and} \ A[i] > A[j])\\ \quad B[k++] \leftarrow A[j++]\\ \quad \text{else}\\ \quad B[k++] \leftarrow A[i++]\\ A \leftarrow B \end{array}
```

Assuming A[1...m] and A[m + 1...n] are sorted (all values distinct).
∀k, in beginning of the loop, we have:
B[1...k - 1]: k - 1 smallest elements in A.
B[1...k - 1] is sorted.

Inductive hypothesis: Claim true for all $k \leq \alpha$.

Idea: Start at iteration $k = \alpha$, and use induction hypothesis, run the loop for one iter... If i > m then true.

```
\begin{array}{l} \operatorname{Merge}(A[1...m], A[m+1...n])\\ i \leftarrow 1, \ j \leftarrow m+1, \ k \leftarrow 1\\ \text{while } (\ k \leq n \ ) \ \text{do}\\ \quad \text{if } i > m \ \text{or } (j \leq n \ \text{and} \ A[i] > A[j])\\ \quad B[k++] \leftarrow A[j++]\\ \quad \text{else}\\ \quad B[k++] \leftarrow A[i++]\\ A \leftarrow B \end{array}
```

Assuming A[1...m] and A[m + 1...n] are sorted (all values distinct).
∀k, in beginning of the loop, we have:
B[1...k - 1]: k - 1 smallest elements in A.
B[1...k - 1] is sorted.

Inductive hypothesis: Claim true for all $k \leq \alpha$.

Idea: Start at iteration $\mathbf{k} = \alpha$, and use induction hypothesis, run the loop for one iter... If $\mathbf{i} > \mathbf{m}$ then true.

If j > n then true.

```
\begin{array}{l} \operatorname{Merge}(A[1...m], A[m+1...n])\\ i \leftarrow 1, \ j \leftarrow m+1, \ k \leftarrow 1\\ \text{while } (\ k \leq n \ ) \ \text{do}\\ \text{ if } i > m \ \text{or } (j \leq n \ \text{and} \ A[i] > A[j])\\ B[k++] \leftarrow A[j++]\\ \text{ else}\\ B[k++] \leftarrow A[i++]\\ A \leftarrow B \end{array}
```

Assuming A[1...m] and A[m + 1...n] are sorted (all values distinct).
∀k, in beginning of the loop, we have:
B[1...k - 1]: k - 1 smallest elements in A.
B[1...k - 1] is sorted.

Inductive hypothesis: Claim true for all $k \leq \alpha$. Idea: Start at iteration $k = \alpha$, and use induction hypothesis, run the loop for one iter... If $i \leq m$ and $j \leq n$ then...

```
\begin{array}{l} \operatorname{Merge}(A[1...m], A[m+1...n])\\ i \leftarrow 1, \ j \leftarrow m+1, \ k \leftarrow 1\\ \text{while } (\ k \leq n \ ) \ \text{do}\\ \text{ if } i > m \ \text{or } (j \leq n \ \text{and} \ A[i] > A[j])\\ B[k++] \leftarrow A[j++]\\ \text{ else}\\ B[k++] \leftarrow A[i++]\\ A \leftarrow B \end{array}
```

Assuming A[1...m] and A[m + 1...n] are sorted (all values distinct).
∀k, in beginning of the loop, we have:
B[1...k - 1]: k - 1 smallest elements in A.
B[1...k - 1] is sorted.

Inductive hypothesis: Claim true for all $k \leq \alpha$. Idea: Start at iteration $k = \alpha$, and use induction hypothesis, run the loop for one iter... If $i \leq m$ and $j \leq n$ then...

Assuming A[1...m] and A[m + 1...n] are sorted (all values distinct). $\forall k$, in beginning of the loop, we have:

• B[1...k-1]: k-1 smallest elements in A.

2 B[1...k-1] is sorted.

Proved claim is correct. Plugging $\mathbf{k} = \mathbf{n} + \mathbf{1}$, implies.

Claim

By end of loop execution **B** (and thus **A**) contain the elements of **A** in sorted order. \implies Merge is correct.

THE END

(for now)

. . .