Algorithms & Models of Computation CS/ECE 374, Fall 2020

10.4 Recursion as self reductions

Reduction: reduce one problem to another

Recursion: a special case of reduction

- reduce problem to a smaller instance of itself
- self-reduction
- Problem instance of size n is reduced to one or more instances of size n-1 or less.
- For termination, problem instances of small size are solved by some other method as base cases

Reduction: reduce one problem to another

Recursion: a special case of reduction

- reduce problem to a smaller instance of itself
- self-reduction
- **9** Problem instance of size n is reduced to one or more instances of size n 1 or less.
- Sor termination, problem instances of small size are solved by some other method as base cases

Recursion

- Recursion is a very powerful and fundamental technique
- Basis for several other methods
 - Divide and conquer
 - Ø Dynamic programming
 - S Enumeration and branch and bound etc
 - Some classes of greedy algorithms
- Makes proof of correctness easy (via induction)
- Recurrences arise in analysis

Tower of Hanoi

The Tower of Hanoi puzzle

Move stack of *n* disks from peg **0** to peg **2**, one disk at a time. Rule: cannot put a larger disk on a smaller disk. Question: what is a strategy and how many moves does it take?

Har-Peled (UIUC)

41

Tower of Hanoi via Recursion

The Tower of Hanoi algorithm; ignore everything but the bottom disk

Recursive Algorithm

```
Hanoi(n, src, dest, tmp):
if (n > 0) then
    Hanoi(n - 1, src, tmp, dest)
    Move disk n from src to dest
    Hanoi(n - 1, tmp, dest, src)
```

T(**n**): time to move **n** disks via recursive strategy

T(n) = 2T(n-1) + 1 n > 1 and T(1) = 1

Recursive Algorithm

```
Hanoi(n, src, dest, tmp):
if (n > 0) then
    Hanoi(n - 1, src, tmp, dest)
    Move disk n from src to dest
    Hanoi(n - 1, tmp, dest, src)
```

T(n): time to move *n* disks via recursive strategy

 ${oldsymbol T}({oldsymbol n})=2{oldsymbol T}({oldsymbol n}-1)+1$ and ${oldsymbol T}(1)=1$

Recursive Algorithm

```
Hanoi(n, src, dest, tmp):
if (n > 0) then
    Hanoi(n - 1, src, tmp, dest)
    Move disk n from src to dest
    Hanoi(n - 1, tmp, dest, src)
```

T(n): time to move *n* disks via recursive strategy

T(n) = 2T(n-1) + 1 n > 1 and T(1) = 1

Analysis

$$T(n) = 2T(n-1) + 1$$

= 2²T(n-2) + 2 + 1
= ...
= 2ⁱT(n-i) + 2ⁱ⁻¹ + 2ⁱ⁻² + ... + 1
= ...
= 2ⁿ⁻¹T(1) + 2ⁿ⁻² + ... + 1
= 2ⁿ⁻¹ + 2ⁿ⁻² + ... + 1
= (2ⁿ - 1)/(2 - 1) = 2ⁿ - 1

THE END

(for now)

. . .