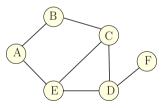
Algorithms & Models of Computation CS/ECE 374, Fall 2020

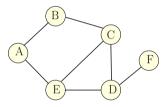

10.3.1

More examples of reductions

Maximum Independent Set in a Graph

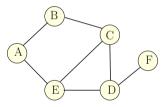
Definition

Given undirected graph G = (V, E) a subset of nodes $S \subseteq V$ is an independent set (also called a stable set) if for there are no edges between nodes in S. That is, if $u, v \in S$ then $(u, v) \notin E$.



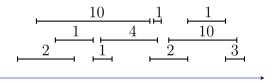
Some independent sets in graph above:

Maximum Independent Set Problem


Input Graph $\boldsymbol{G} = (\boldsymbol{V}, \boldsymbol{E})$

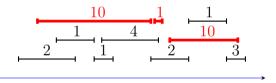
Goal Find maximum sized independent set in \boldsymbol{G}

Maximum Weight Independent Set Problem


Input Graph G = (V, E), weights $w(v) \ge 0$ for $v \in V$ Goal Find maximum weight independent set in G

Weighted Interval Scheduling

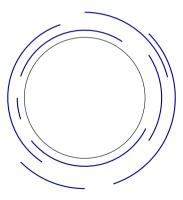
Input A set of jobs with start times, finish times and <u>weights</u> (or profits). Goal Schedule jobs so that total weight of jobs is maximized.


• Two jobs with overlapping intervals cannot both be scheduled!

Weighted Interval Scheduling

Input A set of jobs with start times, finish times and <u>weights</u> (or profits). Goal Schedule jobs so that total weight of jobs is maximized.

• Two jobs with overlapping intervals cannot both be scheduled!



Reduction from Interval Scheduling to MIS

Question: Can you reduce Weighted Interval Scheduling to Max Weight Independent Set Problem?

Weighted Circular Arc Scheduling

Input A set of arcs on a circle, each arc has a <u>weight</u> (or profit). Goal Find a maximum weight subset of arcs that do not overlap.

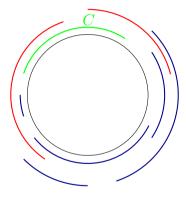
Question: Can you reduce Weighted Circular Arc Scheduling to Weighted Interval Scheduling? Yes!

```
MaxWeightIndependentArcs(arcs C)
cur-max = 0
for each arc C \in C do
Remove C and all arcs overlapping with C
w_C = wt of opt. solution in resulting Interval problem
w_C = w_C + wt(C)
cur-max = max{cur-max, w_C}
end for
return cur-max
```

n calls to the sub-routine for interval scheduling

Question: Can you reduce Weighted Circular Arc Scheduling to Weighted Interval Scheduling? Yes!

n calls to the sub-routine for interval scheduling


Question: Can you reduce Weighted Circular Arc Scheduling to Weighted Interval Scheduling? Yes!

n calls to the sub-routine for interval scheduling

Question: Can you reduce Weighted Circular Arc Scheduling to Weighted Interval Scheduling? Yes!

n calls to the sub-routine for interval scheduling

Illustration

THE END

(for now)

. . .