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Maximum Independent Set in a Graph

Definition
Given undirected graph G = (V ,E) a subset of nodes S ⊆ V is an independent set
(also called a stable set) if for there are no edges between nodes in S. That is, if
u, v ∈ S then (u, v) 6∈ E .
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Some independent sets in graph above:
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Maximum Independent Set Problem

Input Graph G = (V ,E)

Goal Find maximum sized independent set in G
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Maximum Weight Independent Set Problem

Input Graph G = (V ,E), weights w(v) ≥ 0 for v ∈ V
Goal Find maximum weight independent set in G
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Weighted Interval Scheduling

Input A set of jobs with start times, finish times and weights (or profits).
Goal Schedule jobs so that total weight of jobs is maximized.

1 Two jobs with overlapping intervals cannot both be scheduled!
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Reduction from Interval Scheduling to MIS

Question: Can you reduce Weighted Interval Scheduling to Max Weight Independent
Set Problem?
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Weighted Circular Arc Scheduling

Input A set of arcs on a circle, each arc has a weight (or profit).
Goal Find a maximum weight subset of arcs that do not overlap.
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Reductions

Question: Can you reduce Weighted Interval Scheduling to Weighted Circular Arc
Scheduling?

Question: Can you reduce Weighted Circular Arc Scheduling to Weighted Interval
Scheduling? Yes!

MaxWeightIndependentArcs(arcs C)
cur-max = 0
for each arc C ∈ C do

Remove C and all arcs overlapping with C
wC = wt of opt. solution in resulting Interval problem
wC = wC + wt(C)
cur-max = max{cur-max,wC}

end for
return cur-max

n calls to the sub-routine for interval scheduling
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Illustration

C
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THE END
...

(for now)
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