10.10

Supplemental: Divide and conquer for closest pair

Problem: Closest pair

$\boldsymbol{P}:$ Set of \boldsymbol{n} distinct points in the plane.
Compute the two points $\boldsymbol{p}, \boldsymbol{q} \in \boldsymbol{P}$ that are closest together. Formally, compute

$$
\arg \min _{\boldsymbol{p}, \boldsymbol{q} \in P: p \neq \boldsymbol{q}}\|\boldsymbol{p}-\boldsymbol{q}\|
$$

Closest pair: Divide and conquer leads to a special case

(1) $P=P_{L} \cup P_{R}$

Closest pair: Divide and conquer leads to a special case

(1) $P=P_{L} \cup P_{R}$

Closest pair: Divide and conquer leads to a special case

(1) $P=P_{L} \cup P_{R}$

Closest pair: Divide and conquer leads to a special case

(1) $P=P_{L} \cup P_{R}$

Closest pair: Divide and conquer leads to a special case

$$
\begin{aligned}
& \text { (1) } P=P_{L} \cup P_{R} \\
& \text { (2) }\left|P_{L}\right|=\left|P_{R}\right|=n / 2 . \\
& x\left(P_{L}\right)<0 \text { and } x\left(P_{R}\right)>0 .
\end{aligned}
$$

Closest pair: Divide and conquer leads to a special case

(1) $P=P_{L} \cup P_{R}$
(2) $\left|P_{L}\right|=\left|P_{R}\right|=n / 2$. $x\left(P_{L}\right)<0$ and $x\left(P_{R}\right)>0$.
(3) Given $\ell=\min \left(\operatorname{cp}\left(P_{L}\right), \operatorname{cp}\left(P_{R}\right)\right)$.

Closest pair: Divide and conquer leads to a special case

(1) $P=P_{L} \cup P_{R}$
(2) $\left|P_{L}\right|=\left|P_{R}\right|=n / 2$. $x\left(P_{L}\right)<0$ and $x\left(P_{R}\right)>0$.
(3) Given $\ell=\min \left(\operatorname{cp}\left(P_{L}\right), \operatorname{cp}\left(P_{R}\right)\right)$.
(1) $\boldsymbol{P}_{\boldsymbol{m}}=\{\boldsymbol{p} \in \boldsymbol{P} \mid-\ell \leq x(p) \leq \ell\}$

Closest pair: Divide and conquer leads to a special case

(1) $P=P_{L} \cup P_{R}$
(2) $\left|P_{L}\right|=\left|P_{R}\right|=n / 2$.
$x\left(P_{L}\right)<0$ and $x\left(P_{R}\right)>0$.
(0) Given $\ell=\min \left(\operatorname{cp}\left(P_{L}\right), \operatorname{cp}\left(P_{R}\right)\right)$.
(1) $\boldsymbol{P}_{\boldsymbol{m}}=\{\boldsymbol{p} \in \boldsymbol{P} \mid-\ell \leq x(p) \leq \ell\}$
(- Task: compute $\mathbf{c p}(\boldsymbol{P})=\min \left(\ell, \operatorname{cp}\left(\boldsymbol{p}_{M}\right)\right)$.

Closest pair: Divide and conquer leads to a special case

(1) $P=P_{L} \cup P_{R}$
(2) $\left|P_{L}\right|=\left|P_{R}\right|=n / 2$.
$x\left(P_{L}\right)<0$ and $x\left(P_{R}\right)>0$.
(3) Given $\ell=\min \left(\operatorname{cp}\left(P_{L}\right), \operatorname{cp}\left(P_{R}\right)\right)$.
(1) $\boldsymbol{P}_{\boldsymbol{m}}=\{\boldsymbol{p} \in \boldsymbol{P} \mid-\ell \leq \boldsymbol{x}(\boldsymbol{p}) \leq \ell\}$
(- Task: compute $\mathbf{c p}(\boldsymbol{P})=\min \left(\ell, \operatorname{cp}\left(\boldsymbol{p}_{M}\right)\right)$.
(0) Claim: Closest pair in $\boldsymbol{P}_{\boldsymbol{m}}$ can be computed in $\boldsymbol{O}(\boldsymbol{n} \log \boldsymbol{n})$ time.

An elevator can not be too full ...or \mathbf{P}_{m} is well spread

An elevator can not be too full ...or P_{m} is well spread

An elevator can not be too full ...or P_{m} is well spread

An elevator can not be too full ...or P_{m} is well spread

An elevator can not be too full ...or P_{m} is well spread

An elevator can not be too full ...or $\mathbf{P}_{\mathbf{m}}$ is well spread

An elevator can not be too full ...or P_{m} is well spread

An elevator can not be too full ...or $\mathbf{P}_{\mathbf{m}}$ is well spread

An elevator can not be too full ...or $\mathbf{P}_{\mathbf{m}}$ is well spread

An elevator can not be too full ...or P_{m} is well spread

An elevator can not be too full ...or P_{m} is well spread

An elevator can not be too full ...or P_{m} is well spread

An elevator can not be too full ...or $\mathbf{P}_{\mathbf{m}}$ is well spread

An elevator can not be too full ...or $\mathbf{P}_{\mathbf{m}}$ is well spread

An elevator can not be too full ...or P_{m} is well spread

An elevator can not be too full ...or $\mathbf{P}_{\mathbf{m}}$ is well spread

An elevator can not be too full

 ...or P_{m} is well spread

An elevator can not be too full

 ...or P_{m} is well spread

An elevator can not be too full

...or P_{m} is well spread

An elevator can not be too full

 ...or P_{m} is well spread

An elevator can not be too full

...or P_{m} is well spread

Closet pair in $\boldsymbol{P}_{\boldsymbol{m}}$ can be computed in $\boldsymbol{O}(\boldsymbol{n} \log \boldsymbol{n})$ time.

An elevator can not be too full

..or P_{m} is well spread

Closet pair in $\boldsymbol{P}_{\boldsymbol{m}}$ can be computed in $\boldsymbol{O}(\boldsymbol{n} \log \boldsymbol{n})$ time.

Closet pair in $\boldsymbol{P}_{\boldsymbol{m}}$ can be computed in $\boldsymbol{O}(\boldsymbol{n})$ time, if \boldsymbol{P} is presorted by \boldsymbol{y}-order.

Closest pair: Algorithm

CPDInner $=$ ClosestPairDistance

```
CPDInner ( \(\left.\boldsymbol{P}=\left\{p_{1}, \ldots, p_{n}\right\}\right)\) :
    if \(|\boldsymbol{P}|=\boldsymbol{O}(\mathbf{1})\) then compute by brute force
    \(x^{*}=\operatorname{median}\left(x\left(p_{1}\right), \ldots, x\left(p_{n}\right)\right)\).
    \(P_{L} \leftarrow\left\{p \in P \mid x(p) \leq x^{*}\right\}\)
    \(\boldsymbol{P}_{\boldsymbol{R}} \leftarrow\left\{p \in \boldsymbol{p} \mid \boldsymbol{x}(\mathrm{p})>\boldsymbol{x}^{*}\right\}\)
    \(\ell_{L}=\operatorname{CPDInner}\left(P_{L}\right)\)
    \(\ell_{R}=\) CPDInner \(\left(P_{R}\right)\)
    \(\ell=\min \left(\ell_{L}, \ell_{R}\right)\).
    \(\boldsymbol{P}_{\boldsymbol{m}}=\left\{p \in P \mid x^{*}-\ell \leq x(p) \leq x^{*}+\ell\right\}\)
    \(\ell_{M}=\) call alg. closet-pair distance for special case on \(\boldsymbol{P}_{\boldsymbol{m}}\).
    return \(\min \left(\ell, \ell_{m}\right)\).
```

$$
\begin{gathered}
\mathrm{CPD}\left(P=\left\{p_{1}, \ldots, p_{n}\right\}\right): \\
\text { return CPDInner }(P)
\end{gathered}
$$

Closest pair algorithm

Lemma

Given a set \boldsymbol{P} of \boldsymbol{n} points in the plane, one can compute the closet pair distance in \boldsymbol{P} in $\boldsymbol{O}\left(\boldsymbol{n} \log ^{2} \boldsymbol{n}\right)$ time.

Closest pair: Algorithm

CPDInner $=$ ClosestPairDistance

```
CPDInner ( \(\boldsymbol{P}=\left\{\boldsymbol{p}_{1}, \ldots, \boldsymbol{p}_{n}\right\}\) ):
    if \(|\boldsymbol{P}|=\boldsymbol{O}(\mathbf{1})\) then compute by brute force
    \(x^{*}=\operatorname{median}\left(x\left(p_{1}\right), \ldots, x\left(p_{n}\right)\right)\).
    \(P_{L} \leftarrow\left\{p \in P \mid x(p) \leq x^{*}\right\}\)
    \(\boldsymbol{P}_{\boldsymbol{R}} \leftarrow\left\{\mathrm{p} \in \boldsymbol{P} \mid \boldsymbol{x}(\mathrm{p})>\boldsymbol{x}^{*}\right\}\)
    \(\ell_{L}=\operatorname{CPDInner}\left(P_{L}\right)\)
    \(\ell_{R}=\) CPDInner \(\left(P_{R}\right)\)
    \(\ell=\min \left(\ell_{L}, \ell_{R}\right)\).
    \(\boldsymbol{P}_{\boldsymbol{m}}=\left\{\boldsymbol{p} \in \boldsymbol{P} \mid x^{*}-\ell \leq x(p) \leq x^{*}+\ell\right\}\)
    \(\ell_{M}=\) call alg. closet-pair distance for special case on \(\boldsymbol{P}_{\boldsymbol{m}}\).
    return \(\min \left(\ell, \ell_{\boldsymbol{m}}\right)\).
```

$\operatorname{CPD}\left(P=\left\{p_{1}, \ldots, p_{n}\right\}\right):$
Sort \boldsymbol{P} by \boldsymbol{x}-order. Sort \boldsymbol{P} by \boldsymbol{y}-order
return CPDInner (\boldsymbol{P})

Closest pair

Theorem

Given a set \boldsymbol{P} of \boldsymbol{n} points in the plane, one can compute the closet pair distance in \mathbf{P} in $\mathbf{O}(\boldsymbol{n} \log \boldsymbol{n})$ time.

Wait wait... one can do better

Rabin showed that if we allow the floor function, and randomization, one can do better:

Theorem

Given a set \boldsymbol{P} of \boldsymbol{n} points in the plane, one can compute the closet pair distance in \boldsymbol{P} in $\boldsymbol{O}(\boldsymbol{n})$ time.

THE END

(for now)

