Algorithms & Models of Computation CS/ECE 374, Fall 2020

10.10

Supplemental: Divide and conquer for closest pair

Problem: Closest pair

P: Set of **n** distinct points in the plane.

Compute the two points $p, q \in P$ that are closest together. Formally, compute

Har-Peled (UIUC)

 $P = P_I \cup P_R$

 $P = P_L \cup P_R$

 $P = P_L \cup P_R$

 $P = P_L \cup P_R$

$$P = P_L \cup P_R$$
 $|P_L| = |P_R| = n/2.$
 $x(P_L) < 0 \text{ and } x(P_R) > 0$

- $P = P_L \cup P_R$
- ② $|P_L| = |P_R| = n/2.$ $x(P_L) < 0$ and $x(P_R) > 0.$
- Given $\ell = \min(\mathbf{cp}(\mathbf{P}_L), \mathbf{cp}(\mathbf{P}_R))$.

- $P = P_L \cup P_R$
- ② $|P_L| = |P_R| = n/2.$ $x(P_L) < 0$ and $x(P_R) > 0.$
- Given $\ell = \min(\mathbf{cp}(\mathbf{P}_L), \mathbf{cp}(\mathbf{P}_R))$.
- $P_m = \{ p \in P \mid -\ell \leq x(p) \leq \ell \}$

- $\bullet P = P_L \cup P_R$
- **2** $|P_L| = |P_R| = n/2.$ $x(P_L) < 0$ and $x(P_R) > 0.$
- Given $\ell = \min(\mathbf{cp}(\mathbf{P}_L), \mathbf{cp}(\mathbf{P}_R))$.
- $P_m = \{ p \in P \mid -\ell \leq x(p) \leq \ell \}$
- Task: compute $cp(P) = min(\ell, cp(p_M)).$

- $P = P_L \cup P_R$
- **2** $|P_L| = |P_R| = n/2.$ $x(P_L) < 0$ and $x(P_R) > 0.$
- Given $\ell = \min(\mathbf{cp}(\mathbf{P}_L), \mathbf{cp}(\mathbf{P}_R))$.
- $P_m = \{ p \in P \mid -\ell \leq x(p) \leq \ell \}$
- Task: compute $cp(P) = min(\ell, cp(p_M)).$
- Claim: Closest pair in P_m can be computed in O(n log n) time.

Closet pair in P_m can be computed in $O(n \log n)$ time.

Closet pair in P_m can be computed in $O(n \log n)$ time.

Closet pair in P_m can be computed in O(n) time, if P is presorted by y-order.

Closest pair: Algorithm

CPDInner = ClosestPairDistance

```
CPDInner(P = \{p_1, ..., p_n\}):
     if |P| = O(1) then compute by brute force
     x^* = \text{median}(x(p_1), \ldots, x(p_n)).
     P_{l} \leftarrow \{p \in P \mid x(p) < x^*\}
     P_{R} \leftarrow \{p \in P \mid x(p) > x^*\}
     \ell_I = \text{CPDInner}(P_I)
     \ell_{R} = \text{CPDInner}(P_{R})
     \ell = \min(\ell_I, \ell_R).
     P_m = \{ p \in P \mid x^* - \ell < x(p) < x^* + \ell \}
     \ell_M = call alg. closet-pair distance for special case on P_m.
     return \min(\ell, \ell_m).
```

CPD($P = \{p_1, \dots, p_n\}$): return **CPDInner**(P)

Lemma

Given a set **P** of **n** points in the plane, one can compute the closet pair distance in **P** in $O(n \log^2 n)$ time.

Closest pair: Algorithm

CPDInner = ClosestPairDistance

```
CPDInner(P = \{p_1, ..., p_n\}):
      if |P| = O(1) then compute by brute force
      x^* = \text{median}(x(p_1), \ldots, x(p_n)).
      P_{I} \leftarrow \{ p \in P \mid x(p) < x^{*} \}
      P_R \leftarrow \{p \in P \mid x(p) > x^*\}
      \ell_I = \text{CPDInner}(P_I)
      \ell_{\boldsymbol{P}} = \mathsf{CPDInner}(\boldsymbol{P}_{\boldsymbol{P}})
      \ell = \min(\ell_{I}, \ell_{R}).
      P_m = \{ p \in P \mid x^* - \ell < x(p) < x^* + \ell \}
      \ell_M = call alg. closet-pair distance for special case on P_m.
      return \min(\ell, \ell_m).
```

CPD($P = \{p_1, \dots, p_n\}$): Sort P by x-order. Sort P by y-order return CPDInner(P)

Har-Peled (UIUC)

Theorem

Given a set **P** of **n** points in the plane, one can compute the closet pair distance in **P** in $O(n \log n)$ time.

Rabin showed that if we allow the floor function, and randomization, one can do better:

Theorem

Given a set **P** of **n** points in the plane, one can compute the closet pair distance in **P** in O(n) time.

THE END

(for now)

. . .