9.2

Introduction to the halting theorem

## The halting problem

Halting problem: Given a program $\boldsymbol{Q}$, if we run it would it stop?
Can one build a program $P$, that always stops, and solves the halting problem.

## Theorem ("Halting theorem")

There is no program that always stops and solves the halting problem

## The halting problem

Halting problem: Given a program $\boldsymbol{Q}$, if we run it would it stop?
Q: Can one build a program $\boldsymbol{P}$, that always stops, and solves the halting problem.

## Theorem ("Halting theorem")

There is no program that always stops and solves the halting problem.

## Intuition, why solving the Halting problem is really hard

## Definition

An integer number $\boldsymbol{n}$ is a weird number if

- the sum of the proper divisors (including 1 but not itself) of $\boldsymbol{n}$ the number is $>\boldsymbol{n}$,
- no subset of those divisors sums to the number itself.

70 is weird. Its divisors are $\mathbf{1 , 2 , 5 , 7 , 1 0 , 1 4 , 3 5} \mathbf{1}+2+5+\mathbf{7}+\mathbf{1 0}+\mathbf{1 4}+\mathbf{3 5}=\mathbf{7 4}$. No subset of them adds up to 70.

```
Open question: Are there are any odd weird numbers?
Write a program P}\mathrm{ that tries all odd numbers in order, and check if they are weird. The
programs stops if it found such number.
```

If can solve halting problem $\Longrightarrow$ can resolve this open problem.

## Intuition, why solving the Halting problem is really hard

## Definition

An integer number $\boldsymbol{n}$ is a weird number if

- the sum of the proper divisors (including 1 but not itself) of $\boldsymbol{n}$ the number is $>\boldsymbol{n}$,
- no subset of those divisors sums to the number itself.

70 is weird. Its divisors are $\mathbf{1 , 2 , 5 , 7 , 1 0 , 1 4 , 3 5 . 1 + 2 + 5 + 7 + 1 0 + 1 4 + 3 5 = 7 4}$. No subset of them adds up to 70.
Open question: Are there are any odd weird numbers?

```
Write a program P that tries all odd numbers in order, and check if they are weird. The
programs stops if it found such number.
```

If can solve halting problem $\Longrightarrow$ can resolve this open problem.

## Intuition, why solving the Halting problem is really hard

## Definition

An integer number $\boldsymbol{n}$ is a weird number if

- the sum of the proper divisors (including 1 but not itself) of $\boldsymbol{n}$ the number is $>\boldsymbol{n}$,
- no subset of those divisors sums to the number itself.

70 is weird. Its divisors are $\mathbf{1 , 2 , 5 , 7 , 1 0 , 1 4 , 3 5} \mathbf{1}+\mathbf{2 + 5 + 7 + 1 0 + 1 4 + 3 5 = 7 4}$. No subset of them adds up to 70 .
Open question: Are there are any odd weird numbers?
Write a program $\boldsymbol{P}$ that tries all odd numbers in order, and check if they are weird. The programs stops if it found such number.
If can solve halting problem $\Rightarrow$ can resolve this open problem.

## Intuition, why solving the Halting problem is really hard

## Definition

An integer number $\boldsymbol{n}$ is a weird number if

- the sum of the proper divisors (including 1 but not itself) of $\boldsymbol{n}$ the number is $>\boldsymbol{n}$,
- no subset of those divisors sums to the number itself.

70 is weird. Its divisors are $\mathbf{1 , 2 , 5 , 7 , 1 0 , 1 4 , 3 5} \mathbf{1}+\mathbf{2 + 5 + 7 + 1 0 + 1 4 + 3 5 = 7 4}$. No subset of them adds up to 70 .
Open question: Are there are any odd weird numbers?
Write a program $\boldsymbol{P}$ that tries all odd numbers in order, and check if they are weird. The programs stops if it found such number.
If can solve halting problem $\Rightarrow$ can resolve this open problem.

## If you can halt, you can prove or disprove anything...

(1) Consider any math claim $\boldsymbol{C}$.
(2) Prover algorithm $P_{C}$ :
(A) Generate sequence of all possible proofs (sequence of strings) into a pipe/queue. (B) $\langle p\rangle \leftarrow$ pop top of queue.
(C) Feed $\langle\boldsymbol{p}\rangle$ and $\langle\boldsymbol{C}\rangle$, into a proof verifier ("easy").
(D) If $\langle\boldsymbol{p}\rangle$ valid proof of $\langle\boldsymbol{C}\rangle$, then stop and accept.
(E) Go to (B)
(3) $P_{C}$ halts $\Longleftrightarrow C$ is true and has a proof.
(9) If halting is decidable, then can decide if any claim in math is true.

## If you can halt, you can prove or disprove anything...

(1) Consider any math claim $\boldsymbol{C}$.
(2) Prover algorithm $P_{C}$ :
(A) Generate sequence of all possible proofs (sequence of strings) into a pipe/queue. (B) $\langle\boldsymbol{p}\rangle \leftarrow$ pop top of queue.
(C) Feed $\langle\boldsymbol{p}\rangle$ and $\langle C\rangle$, into a proof verifier ("easy").
(D) If $\langle\boldsymbol{p}\rangle$ valid proof of $\langle\boldsymbol{C}\rangle$, then stop and accept.
(E) Go to (B)
(3) $P_{C}$ halts $\Longleftrightarrow C$ is true and has a proof
(9) If halting is decidable, then can decide if any claim in math is true.

## If you can halt, you can prove or disprove anything...

(1) Consider any math claim $\boldsymbol{C}$.
(2) Prover algorithm $\boldsymbol{P}_{C}$ :
(A) Generate sequence of all possible proofs (sequence of strings) into a pipe/queue.
(B) $\langle\boldsymbol{p}\rangle \leftarrow$ pop top of queue.
(C) Feed $\langle\boldsymbol{p}\rangle$ and $\langle\boldsymbol{C}\rangle$, into a proof verifier ("easy").
(D) If $\langle\boldsymbol{p}\rangle$ valid proof of $\langle\boldsymbol{C}\rangle$, then stop and accept.
(E) Go to (B).
(3) $P_{C}$ halts $\Longleftrightarrow \boldsymbol{C}$ is true and has a proof.
(9) If halting is decidable, then can decide if any claim in math is true.

## If you can halt, you can prove or disprove anything...

(1) Consider any math claim $\boldsymbol{C}$.
(2) Prover algorithm $\boldsymbol{P}_{C}$ :
(A) Generate sequence of all possible proofs (sequence of strings) into a pipe/queue.
(B) $\langle\boldsymbol{p}\rangle \leftarrow$ pop top of queue.
(C) Feed $\langle\boldsymbol{p}\rangle$ and $\langle\boldsymbol{C}\rangle$, into a proof verifier ("easy").
(D) If $\langle\boldsymbol{p}\rangle$ valid proof of $\langle\boldsymbol{C}\rangle$, then stop and accept.
(E) Go to (B).
(3) $\boldsymbol{P}_{\boldsymbol{C}}$ halts $\Longleftrightarrow \boldsymbol{C}$ is true and has a proof.
(4) If halting is decidable, then can decide if any claim in math is true.

## THE END

## (for now)

