Halting, Undecidability, and Maybe Some Complexity

Lecture 9
Tuesday, September 22, 2020

Quote

"Young man, in mathematics you don't understand things. You just get used to them." - John von Neumann.

9.1
 Cantor's diagonalization argument

You can not count the real numbers

```
I=(0,1).
N}={1,2,3,\ldots.} the integer numbers
```

Claim (Cantor)
$|\mathbb{N}| \neq|\boldsymbol{I}|$
Claim (Warm-up)
$|\mathbb{N}| \leq|I|$
$|\mathbb{N}| \leq|\boldsymbol{I}|$ exists a one-to-one mapping from \mathbb{N} to \boldsymbol{I}. One such mapping is $\boldsymbol{f}(\boldsymbol{i})=\mathbf{1} / \boldsymbol{i}$, which readily implies the claim.

You can not count the real numbers

$I=(\mathbf{0}, \mathbf{1})$.
$\mathbb{N}=\{1,2,3, \ldots\}$ the integer numbers
Claim (Cantor)
$|\mathbb{N}| \neq|I|$
Claim (Warm-up)
$|\mathbb{N}| \leq|I|$

Proof.

$|\mathbb{N}| \leq|\boldsymbol{I}|$ exists a one-to-one mapping from \mathbb{N} to \boldsymbol{I}. One such mapping is $\boldsymbol{f}(\boldsymbol{i})=\mathbf{1} / \boldsymbol{i}$, which readily implies the claim.

You can not count the real numbers II

$$
I=(0,1), \mathbb{N}=\{1,2,3, \ldots\}
$$

Claim (Cantor)
$|\mathbb{N}| \neq|\boldsymbol{I}|$, where $\boldsymbol{I}=(\mathbf{0}, \mathbf{1})$.

Proof.

Write every number in $(\mathbf{0}, \mathbf{1})$ in its decimal expansion. E.g.
$1 / 3=0.33333333333333333333$
Assume that $|\mathbb{N}|=|I|$. Then there exists a one-to-one mapping $f: \mathbb{N} \rightarrow I$. Let β_{i} be the i th digit of $f(i) \in(0,1)$
$\boldsymbol{d}_{i}=$ any number in $\{\mathbf{0}, \mathbf{1}, \mathbf{2}, \mathbf{3}, 4,5, \mathbf{6}, \mathbf{7}, \mathbf{8}, 9\} \backslash\left\{\boldsymbol{d}_{i-1}, \boldsymbol{\beta}_{i}\right\}$
$D=0 . d_{1} d_{2} d_{3} \ldots \in(0,1)$
D is a well defined unique number in $(0,1)$
But there is no j such that $f(j)=D$. A contradiction.

You can not count the real numbers II

$$
I=(0,1), \mathbb{N}=\{1,2,3, \ldots\}
$$

Claim (Cantor)

$|\mathbb{N}| \neq|\boldsymbol{I}|$, where $\boldsymbol{I}=(\mathbf{0}, \mathbf{1})$.

Proof.

Write every number in $(\mathbf{0}, \mathbf{1})$ in its decimal expansion. E.g.,
$1 / 3=0.33333333333333333333 \ldots$
Assume that $|\mathbb{N}|=|\boldsymbol{I}|$. Then there exists a one-to-one mapping $\boldsymbol{f}: \mathbb{N} \rightarrow \boldsymbol{I}$. Let $\boldsymbol{\beta}_{\boldsymbol{i}}$ be the \boldsymbol{i} th digit of $\boldsymbol{f}(\boldsymbol{i}) \in(\mathbf{0}, \mathbf{1})$.
$\boldsymbol{d}_{\boldsymbol{i}}=$ any number in $\{\mathbf{0}, \mathbf{1}, \mathbf{2}, \mathbf{3}, \mathbf{4}, \mathbf{5}, \mathbf{6}, \mathbf{7}, \mathbf{8}, \mathbf{9}\} \backslash\left\{\boldsymbol{d}_{\boldsymbol{i}-\mathbf{1}}, \boldsymbol{\beta}_{\boldsymbol{i}}\right\}$
$D=0 . \boldsymbol{d}_{1} \boldsymbol{d}_{\mathbf{2}} \boldsymbol{d}_{3} \ldots \in(\mathbf{0}, \mathbf{1})$.
\boldsymbol{D} is a well defined unique number in $(\mathbf{0}, \mathbf{1})$,
But there is no \boldsymbol{j} such that $\boldsymbol{f}(\boldsymbol{j})=\boldsymbol{D}$. A contradiction.

The matrix...

	$\boldsymbol{f}(\mathbf{1})$	$\boldsymbol{f}(\mathbf{2})$	$\boldsymbol{f}(\mathbf{3})$	$\boldsymbol{f}(\mathbf{4})$	\ldots
$\mathbf{1}$	$\mathbf{1}$	1	0	0	\ldots
$\mathbf{2}$	0	$\mathbf{1}$	0	1	\ldots
$\mathbf{3}$	1	0	$\mathbf{1}$	1	\ldots
$\mathbf{4}$	0	1	0	$\mathbf{0}$	\ldots
\vdots	\vdots	\vdots	\vdots	\vdots	\ddots

The matrix...

	$\boldsymbol{f}(\mathbf{1})$	$\boldsymbol{f}(\mathbf{2})$	$\boldsymbol{f}(\mathbf{3})$	$\boldsymbol{f}(\mathbf{4})$	\ldots
$\mathbf{1}$	$\boldsymbol{\beta}_{\mathbf{1}}=\mathbf{1}$	1	0	0	\cdots
$\mathbf{2}$	0	$\boldsymbol{\beta}_{\mathbf{2}}=\mathbf{1}$	0	1	\ldots
$\mathbf{3}$	1	0	$\boldsymbol{\beta}_{\mathbf{3}}=\mathbf{1}$	1	\ldots
$\mathbf{4}$	0	1	0	$\boldsymbol{\beta}_{\mathbf{4}}=\mathbf{0}$	\ldots
\vdots	\vdots	\vdots	\vdots	\vdots	\ddots

$\boldsymbol{d}_{\boldsymbol{i}}=$ any number in $\{\mathbf{0}, \mathbf{1}, \mathbf{2}, \mathbf{3}, \mathbf{4}, \mathbf{5}, \mathbf{6}, \mathbf{7}, \mathbf{8}, \mathbf{9}\} \backslash\left\{\boldsymbol{d}_{\boldsymbol{i}-\mathbf{1}}, \boldsymbol{\beta}_{\boldsymbol{i}}\right\}$

The matrix...

	$\boldsymbol{f}(\mathbf{1})$	$\boldsymbol{f}(\mathbf{2})$	$\boldsymbol{f}(\mathbf{3})$	$\boldsymbol{f}(\mathbf{4})$	\ldots
$\mathbf{1}$	$\mathbf{1}$	1	0	0	\cdots
$\mathbf{2}$	0	$\mathbf{1}$	0	1	\ldots
$\mathbf{3}$	1	0	$\mathbf{1}$	1	\ldots
$\mathbf{4}$	0	1	0	$\mathbf{0}$	\ldots
\vdots	\vdots	\vdots	\vdots	\vdots	\ddots

$\boldsymbol{d}_{\boldsymbol{i}}=$ any number in $\{\mathbf{0}, \mathbf{1}, \mathbf{2}, \mathbf{3}, \mathbf{4}, \mathbf{5}, \mathbf{6}, \mathbf{7}, \mathbf{8}, \mathbf{9}\} \backslash\left\{\boldsymbol{d}_{\boldsymbol{i}-\mathbf{1}}, \boldsymbol{\beta}_{\boldsymbol{i}}\right\}$
$\Longrightarrow \forall \boldsymbol{i} \boldsymbol{\beta}_{\boldsymbol{i}} \neq \boldsymbol{d}_{\boldsymbol{i}}$.

The matrix...

	$\boldsymbol{f}(\mathbf{1})$	$\boldsymbol{f}(\mathbf{2})$	$\boldsymbol{f}(\mathbf{3})$	$\boldsymbol{f}(\mathbf{4})$	\ldots
$\mathbf{1}$	$\mathbf{1}$	1	0	0	\ldots
$\mathbf{2}$	0	$\mathbf{1}$	0	1	\ldots
$\mathbf{3}$	1	0	$\mathbf{1}$	1	\ldots
$\mathbf{4}$	0	1	0	$\mathbf{0}$	\ldots
\vdots	\vdots	\vdots	\vdots	\vdots	\ddots

$\boldsymbol{d}_{\boldsymbol{i}}=$ any number in $\{\mathbf{0}, \mathbf{1}, \mathbf{2}, \mathbf{3}, \mathbf{4}, \mathbf{5}, \mathbf{6}, \mathbf{7}, \mathbf{8}, \mathbf{9}\} \backslash\left\{\boldsymbol{d}_{\boldsymbol{i}-\mathbf{1}}, \boldsymbol{\beta}_{\boldsymbol{i}}\right\}$
$\Longrightarrow \forall i \boldsymbol{\beta}_{\boldsymbol{i}} \neq \boldsymbol{d}_{\boldsymbol{i}}$.
$D=0.23232323$
\boldsymbol{D} can not be the \boldsymbol{i} column, because $\boldsymbol{\beta}_{\boldsymbol{i}} \neq \boldsymbol{d}_{\boldsymbol{i}}$.

The matrix...

	$\boldsymbol{f}(\mathbf{1})$	$\boldsymbol{f}(\mathbf{2})$	$\boldsymbol{f}(\mathbf{3})$	$\boldsymbol{f}(\mathbf{4})$	\ldots
$\mathbf{1}$	$\mathbf{1}$	1	0	0	\ldots
$\mathbf{2}$	0	$\mathbf{1}$	0	1	\ldots
$\mathbf{3}$	1	0	$\mathbf{1}$	1	\ldots
$\mathbf{4}$	0	1	0	$\mathbf{0}$	\ldots
\vdots	\vdots	\vdots	\vdots	\vdots	\ddots

$\boldsymbol{d}_{\boldsymbol{i}}=$ any number in $\{\mathbf{0}, \mathbf{1}, \mathbf{2}, \mathbf{3}, \mathbf{4}, \mathbf{5}, \mathbf{6}, \mathbf{7}, \mathbf{8}, \mathbf{9}\} \backslash\left\{\boldsymbol{d}_{\boldsymbol{i}-\mathbf{1}}, \boldsymbol{\beta}_{\boldsymbol{i}}\right\}$
$\Longrightarrow \forall i \boldsymbol{\beta}_{\boldsymbol{i}} \neq \boldsymbol{d}_{\boldsymbol{i}}$.
$D=0.23232323$
\boldsymbol{D} can not be the \boldsymbol{i} column, because $\boldsymbol{\beta}_{\boldsymbol{i}} \neq \boldsymbol{d}_{\boldsymbol{i}}$. But \boldsymbol{D} can not be in the matrix...

The liar paradox

When one day an expedition was sent to the spatial coordinates that Voojagig had claimed for this planet they discovered only a small asteroid inhabited by a solitary old man who claimed repeatedly that nothing was true, though he was later discovered to be lying.

- The Hitchhiker Guide to the Galaxy
© The liar's paradox: This sentence is false.
(2) Related to Russell's paradox.
- Omnipotence paradox: Can [an omnipotent being] create a stone so heavy that it cannot lift it?

The liar paradox

When one day an expedition was sent to the spatial coordinates that Voojagig had claimed for this planet they discovered only a small asteroid inhabited by a solitary old man who claimed repeatedly that nothing was true, though he was later discovered to be lying.

- The Hitchhiker Guide to the Galaxy
(1) The liar's paradox: This sentence is false.
© Related to Russell's paradox.
- Omnipotence paradox: Can [an omnipotent being] create a stone so heavy that it cannot lift it?

The liar paradox

When one day an expedition was sent to the spatial coordinates that Voojagig had claimed for this planet they discovered only a small asteroid inhabited by a solitary old man who claimed repeatedly that nothing was true, though he was later discovered to be lying.

- The Hitchhiker Guide to the Galaxy
(1) The liar's paradox: This sentence is false.
(2) Related to Russell's paradox.
(3) Omnipotence paradox: Can [an omnipotent being] create a stone so heavy that it cannot lift it?

The liar paradox

When one day an expedition was sent to the spatial coordinates that Voojagig had claimed for this planet they discovered only a small asteroid inhabited by a solitary old man who claimed repeatedly that nothing was true, though he was later discovered to be lying.

- The Hitchhiker Guide to the Galaxy
(1) The liar's paradox: This sentence is false.
(2) Related to Russell's paradox.
(Omnipotence paradox: Can [an omnipotent being] create a stone so heavy that it cannot lift it?

THE END

(for now)

