Algorithms & Models of Computation CS/ECE 374, Fall 2020

8.4

Languages defined by a Turing machine

Recursive vs. Recursively Enumerable

<u>Recursively enumerable</u> (aka <u>RE</u>) languages

 $L = \{L(M) \mid M \text{ some Turing machine}\}.$

Recursive / decidable languages

 $L = \{L(M) \mid M \text{ some Turing machine that halts on all inputs}\}$.

Fundamental questions:

- What languages are RE?
- Which are recursive?
- O What is the difference?
- What makes a language decidable?
- \odot How much wood would a TM chuck, if a TM could chuck wood?

24

Recursive vs. Recursively Enumerable

Recursively enumerable (aka <u>RE</u>) languages (bad)

 $L = \{L(M) \mid M \text{ some Turing machine}\}.$

Recursive $/ \frac{\text{decidable}}{L} = \{L(M) \mid M \text{ some Turing machine that halts on all inputs} \}.$

- Fundamental questions:
 - What languages are RE?
 - Which are recursive?
 - What is the difference?
 - What makes a language decidable?
 - ${f 0}$ How much wood would a ${
 m TM}$ chuck, if a ${
 m TM}$ could chuck wood?

Recursive vs. Recursively Enumerable

Recursively enumerable (aka <u>RE</u>) languages (bad)

 $L = \{L(M) \mid M \text{ some Turing machine}\}.$

Recursive $/ \frac{\text{decidable}}{L} = \{L(M) \mid M \text{ some Turing machine that halts on all inputs} \}.$

- Indamental questions:
 - What languages are RE?
 - Which are recursive?
 - What is the difference?
 - What makes a language decidable?
 - \mathbf{S} How much wood would a \mathbf{TM} chuck, if a \mathbf{TM} could chuck wood?

Har-Peled (UIUC)

CS374

24

How was the Turing Machine invented...

Har-Peled (UIUC)

THE END

(for now)

. . .