Algorithms & Models of Computation

CS/ECE 374, Fall 2020

7.8

Supplemental: Why $a^nb^nc^n$ is not CFL

You are bound to repeat yourself...

$$L = \{a^n b^n c^n \mid n \ge 0\}.$$

- For the sake of contradiction assume that there exists a grammar:
 G a CFG for L.
- ② T_i : minimal parse tree in G for $a^i b^i c^i$.
- \bullet $h_i = \text{height}(T_i)$: Length of longest path from root to leaf in T_i .
- lacksquare For any integer t, there must exist an index j(t), such that $h_{j(t)}>t$.
- There an index j, such that $h_j > (2 * \# \text{ variables in } G)$.

You are bound to repeat yourself...

$$L = \{a^n b^n c^n \mid n \ge 0\}.$$

- For the sake of contradiction assume that there exists a grammar:
 G a CFG for L.
- ② T_i : minimal parse tree in G for $a^i b^i c^i$.
- \bullet $h_i = \text{height}(T_i)$: Length of longest path from root to leaf in T_i .
- For any integer t, there must exist an index j(t), such that $h_{j(t)} > t$.
- There an index j, such that $h_j > (2 * \# \text{ variables in } G)$.

Repetition in the parse tree...

Repetition in the parse tree...

$$xyzvw = a^j b^j c^j$$

Har-Peled (UIUC) CS374 62 Fall 2020 62 / 63

Repetition in the parse tree...

$$xyzvw = a^j b^j c^j \implies xy^2 zv^2 w \in L$$

Har-Peled (UIUC) CS374 62 Fall 2020 62 / 63

$$xyzvw = a^{j}b^{j}c^{j}$$
$$|y| + |v| > 0.$$

- We proved that $\tau = xy^2zv^2w \in L$.
- If y contains both a and b, then, $\tau = \dots a \dots b \dots a \dots b \dots$. Impossible, since $\tau \in L = \{a^n b^n c^n \mid n \ge 0\}$.
- Similarly, not possible that y contains both b and c.
- Similarly, not possible that *v* contains both *a* and *b*.
- Similarly, not possible that v contains both b and c.
- If y contains only as, and v contains only bs, then... $\#_{(a)}(\tau) \neq \#_{(c)}(\tau)$. Not possible.
- Similarly, not possible that y contains only as, and v contains only cs. Similarly, not possible that y contains only bs, and v contains only cs.
- Must be that $\tau \notin L$. A contradiction.

$$xyzvw = a^{j}b^{j}c^{j}$$
$$|y| + |v| > 0.$$

- We proved that $\tau = xy^2zv^2w \in L$.
- If y contains both a and b, then, $\tau = ...a..b...a..b...$.
 Impossible, since $\tau \in L = \{a^nb^nc^n \mid n \geq 0\}$.
- Similarly, not possible that y contains both b and c.
- Similarly, not possible that *v* contains both *a* and *b*.
- Similarly, not possible that v contains both b and c.
- If y contains only as, and v contains only bs, then... $\#_{(a)}(\tau) \neq \#_{(c)}(\tau)$. Not possible.
- Similarly, not possible that y contains only as, and v contains only cs.
 Similarly, not possible that y contains only bs, and v contains only cs.
- Must be that $\tau \notin L$. A contradiction.

$$xyzvw = a^{j}b^{j}c^{j}$$
$$|y| + |v| > 0.$$

- We proved that $\tau = xy^2zv^2w \in L$.
- If y contains both a and b, then, $\tau = \dots a \dots b \dots a \dots b \dots$. Impossible, since $\tau \in L = \{a^n b^n c^n \mid n \geq 0\}$.
- Similarly, not possible that y contains both b and c.
- Similarly, not possible that v contains both a and b.
- Similarly, not possible that v contains both b and c.
- If y contains only as, and v contains only bs, then... $\#_{(a)}(\tau) \neq \#_{(c)}(\tau)$. Not possible.
- Similarly, not possible that y contains only as, and v contains only cs. Similarly, not possible that y contains only bs, and v contains only cs.
- Must be that $\tau \notin L$. A contradiction.

$$xyzvw = a^{j}b^{j}c^{j}$$
$$|y| + |v| > 0.$$

- We proved that $\tau = xy^2zv^2w \in L$.
- If y contains both a and b, then, $\tau = \dots a \dots b \dots a \dots b \dots$ Impossible, since $\tau \in L = \{a^n b^n c^n \mid n > 0\}$.
- Similarly, not possible that y contains both b and c.
- Similarly, not possible that *v* contains both *a* and *b*.
- Similarly, not possible that v contains both b and c.
- If y contains only as, and v contains only bs, then... $\#_{(a)}(\tau) \neq \#_{(c)}(\tau)$. Not possible.
- Similarly, not possible that y contains only as, and v contains only cs. Similarly, not possible that y contains only bs, and v contains only cs.
- Must be that $\tau \notin L$. A contradiction.

$$xyzvw = a^{j}b^{j}c^{j}$$
$$|y| + |v| > 0.$$

- We proved that $\tau = xy^2zv^2w \in L$.
- If y contains both a and b, then, $\tau = \dots a \dots b \dots a \dots b \dots$ Impossible, since $\tau \in L = \{a^n b^n c^n \mid n \ge 0\}$.
- Similarly, not possible that y contains both b and c.
- Similarly, not possible that v contains both a and b.
- Similarly, not possible that v contains both b and c.
- If y contains only as, and v contains only bs, then... $\#_{(a)}(\tau) \neq \#_{(c)}(\tau)$. Not possible.
- Similarly, not possible that y contains only as, and v contains only cs. Similarly, not possible that y contains only bs, and v contains only cs.
- Must be that $\tau \notin L$. A contradiction.

$$xyzvw = a^{j}b^{j}c^{j}$$
$$|y| + |v| > 0.$$

- We proved that $\tau = xy^2zv^2w \in L$.
- If y contains both a and b, then, $\tau = \dots a \dots b \dots a \dots b \dots$. Impossible, since $\tau \in L = \{a^n b^n c^n \mid n \geq 0\}$.
- Similarly, not possible that y contains both b and c.
- Similarly, not possible that v contains both a and b.
- Similarly, not possible that v contains both b and c.
- If y contains only as, and v contains only bs, then... $\#_{(a)}(\tau) \neq \#_{(c)}(\tau)$. Not possible.
- Similarly, not possible that y contains only as, and v contains only cs. Similarly, not possible that y contains only bs, and v contains only cs.
- Must be that $\tau \notin L$. A contradiction.

$$xyzvw = a^{j}b^{j}c^{j}$$
$$|y| + |v| > 0.$$

- We proved that $\tau = xy^2zv^2w \in L$.
- If y contains both a and b, then, $\tau = \dots a \dots b \dots a \dots b \dots$ Impossible, since $\tau \in L = \{a^n b^n c^n \mid n \ge 0\}$.
- Similarly, not possible that y contains both b and c.
- Similarly, not possible that v contains both a and b.
- Similarly, not possible that v contains both b and c.
- If y contains only as, and v contains only bs, then... $\#_{(a)}(\tau) \neq \#_{(c)}(\tau)$. Not possible.
- Similarly, not possible that y contains only as, and v contains only cs.
 Similarly, not possible that y contains only bs, and v contains only cs.
- Must be that $\tau \notin L$. A contradiction.

$$xyzvw = a^{j}b^{j}c^{j}$$
$$|y| + |v| > 0.$$

- We proved that $\tau = xy^2zv^2w \in L$.
- If y contains both a and b, then, $\tau = \dots a \dots b \dots a \dots b \dots$. Impossible, since $\tau \in L = \{a^n b^n c^n \mid n \geq 0\}$.
- Similarly, not possible that y contains both b and c.
- Similarly, not possible that v contains both a and b.
- Similarly, not possible that v contains both b and c.
- If y contains only as, and v contains only bs, then... $\#_{(a)}(\tau) \neq \#_{(c)}(\tau)$. Not possible.
- Similarly, not possible that y contains only as, and v contains only cs.
 Similarly, not possible that y contains only bs, and v contains only cs.
- Must be that $\tau \notin L$. A contradiction.

We conclude...

Lemma

The language $\mathbf{L} = \{\mathbf{a}^n \mathbf{b}^n \mathbf{c}^n \mid \mathbf{n} \geq 0\}$ is not CFL (i.e., there is no CFG for it).