Algorithms \& Models of Computation

7.8

Supplemental: Why $a^{n} b^{n} c^{n}$ is not CFL

You are bound to repeat yourself...

$L=\left\{a^{n} b^{n} c^{n} \mid n \geq 0\right\}$.
(1) For the sake of contradiction assume that there exists a grammar: G a CFG for L.
(2) T_{i} : minimal parse tree in G for $a^{i} b^{i} \boldsymbol{c}^{i}$.
© $h_{i}=\operatorname{height}\left(T_{i}\right)$: Length of longest path from root to leaf in T_{i}

- For any integer t, there must exist an index $j(t)$, such that $h_{j(t)}>t$
- There an index \boldsymbol{i}, such that $\boldsymbol{h}_{\boldsymbol{j}}>(2 * \#$ variables in $\boldsymbol{G})$.

You are bound to repeat yourself...

$L=\left\{a^{n} b^{n} c^{n} \mid n \geq 0\right\}$.
(1) For the sake of contradiction assume that there exists a grammar: G a CFG for L.
(2) T_{i} : minimal parse tree in G for $a^{i} b^{i} \boldsymbol{c}^{i}$.
(0) $\boldsymbol{h}_{\boldsymbol{i}}=\operatorname{height}\left(\boldsymbol{T}_{\boldsymbol{i}}\right)$: Length of longest path from root to leaf in $\boldsymbol{T}_{\boldsymbol{i}}$.
(1) For any integer \boldsymbol{t}, there must exist an index $\boldsymbol{j}(\boldsymbol{t})$, such that $\boldsymbol{h}_{j(t)}>\boldsymbol{t}$.

- There an index \boldsymbol{j}, such that $\boldsymbol{h}_{\boldsymbol{j}}>(2 * \#$ variables in $\boldsymbol{G})$.

Repetition in the parse tree...

Repetition in the parse tree...

$x y z v w=a^{j} b^{j} c^{j}$

Repetition in the parse tree...

$x y z v w=a^{j} b^{j} c^{j} \Longrightarrow x y^{2} z v^{2} w \in L$

- We know:
$x y z v w=a^{j} b^{j} c^{j}$
$|y|+|v|>0$.
- We proved that $\boldsymbol{\tau}=x y^{2} z \boldsymbol{v}^{2} w \in L$.
- If y contains both a and b, then, $\tau=\ldots b . . a . . . b . .$.

Impossible, since $\tau \in L=\left\{a^{n} b^{n} c^{n} \mid n \geq 0\right\}$

- Similarly, not possible that \boldsymbol{y} contains both \boldsymbol{b} and c
- Similarly, not possible that v contains both a and b
- Similarly, not possible that v contains both b and c
- If \boldsymbol{y} contains only as, and \boldsymbol{v} contains only $\boldsymbol{b s}$, then... \#(a) $(\tau) \neq \#_{(c)}(\tau)$. Not possible.
- Similarly, not possible that y contains only as, and v contains only cs. Similarly, not possible that y contains only $b s$, and v contains only $c s$.
- Must be that $\tau \notin L$. A contradiction.
- We know:
$x y z v w=a^{j} b^{j} c^{j}$
$|y|+|v|>0$.
- We proved that $\boldsymbol{\tau}=x y^{2} z v^{2} w \in L$.
- If y contains both a and b, then, $\boldsymbol{\tau}=$...a...b...a...b....
- Similarly, not possible that \boldsymbol{y} contains both b and c
- Similarly, not possible that \boldsymbol{v} contains both \boldsymbol{a} and \boldsymbol{b}
- Similarly, not possible that v contains both b and c
- If \boldsymbol{y} contains only $a s$, and v contains only $b s$, then... $\#_{(a)}(\tau) \neq \#_{(c)}(\tau)$ Not possible
- Similarly, not possible that y contains only as, and v contains only cs. Similarly, not possible that y contains only $b s$, and v contains only cs.
- Must be that $\tau \notin L$. A contradiction.
- We know:
$x y z v w=a^{j} b^{j} c^{j}$
$|y|+|v|>0$.
- We proved that $\tau=x y^{2} z v^{2} w \in L$.
- If y contains both a and b, then, $\boldsymbol{\tau}=$...a...b...a...b.... Impossible, since $\tau \in L=\left\{a^{n} b^{n} c^{n} \mid n \geq 0\right\}$.
- Similarly, not possible that y contains both b and c
- Similarly, not possible that v contains both a and b
- Similarly, not possible that v contains both b and c
- If y contains only as, and v contains only bs, then... \#(a) $(\tau) \neq \#_{(c)}(\tau)$ Not possible
- Similarly, not possible that y contains only as, and v contains only cs. Similarly, not possible that y contains only bs, and v contains only cs.
- Must be that $\tau \notin L$. A contradiction.
- We know:
$x y z v w=a^{j} b^{j} c^{j}$
$|y|+|v|>0$.
- We proved that $\tau=x y^{2} z v^{2} w \in L$.
- If y contains both a and b, then, $\tau=\ldots a$...b...a...b.... Impossible, since $\tau \in L=\left\{a^{n} b^{n} c^{n} \mid n \geq 0\right\}$.
- Similarly, not possible that \boldsymbol{y} contains both \boldsymbol{b} and \boldsymbol{c}.
- Similarly, not possible that v contains both a and b.
- Similarly, not possible that v contains both b and c
- If \boldsymbol{y} contains only as, and \boldsymbol{v} contains only $\boldsymbol{b s}$, then $\ldots \neq(a)(\tau) \neq \#(c)(\tau)$ Not possible
- Similarly, not possible that y contains only as, and v contains only cs. Similarly, not possible that y contains only $b s$, and v contains only cs.
- Must be that $\tau \notin L$. A contradiction.
- We know:
$x y z v w=a^{j} b^{j} c^{j}$
$|y|+|v|>0$.
- We proved that $\boldsymbol{\tau}=x y^{2} z v^{2} w \in L$.
- If y contains both a and b, then, $\tau=\ldots a . . . b . . . a$...b.... Impossible, since $\tau \in L=\left\{a^{n} b^{n} c^{n} \mid n \geq 0\right\}$.
- Similarly, not possible that \boldsymbol{y} contains both b and c.
- Similarly, not possible that v contains both a and b.
- Similarly, not possible that \boldsymbol{v} contains both \boldsymbol{b} and \boldsymbol{c}.
- If y contains only as, and v contains only $b s$, then... \#(a) $(\tau) \neq \#(c)(\tau)$ Not possible
- Similarly, not possible that y contains only as, and v contains only cs Similarly, not possible that y contains only bs, and v contains only cs.
- Must be that $\tau \notin L$. A contradiction.
- We know:
$x y z v w=a^{j} b^{j} c^{j}$
$|y|+|v|>0$.
- We proved that $\boldsymbol{\tau}=x y^{2} z v^{2} w \in L$.
- If y contains both a and b, then, $\tau=\ldots a . . . b . . . a . . . b . .$. . Impossible, since $\tau \in L=\left\{a^{n} b^{n} c^{n} \mid n \geq 0\right\}$.
- Similarly, not possible that \boldsymbol{y} contains both b and c.
- Similarly, not possible that v contains both a and b.
- Similarly, not possible that v contains both b and c.
- If y contains only as, and v contains only $b s$, then... $\#_{(a)}(\tau) \neq \#_{(c)}(\tau)$. Not possible.
- Similarly, not possible that y contains only as, and v contains only cs. Similarly, not possible that y contains only bs, and v contains only cs.
- Must be that $\tau \notin L$. A contradiction.
- We know:
$x y z v w=a^{j} b^{j} c^{j}$
$|y|+|v|>0$.
- We proved that $\boldsymbol{\tau}=x y^{2} z v^{2} w \in L$.
- If y contains both a and b, then, $\tau=\ldots a$...b...a...b.... Impossible, since $\tau \in L=\left\{a^{n} b^{n} c^{n} \mid n \geq 0\right\}$.
- Similarly, not possible that \boldsymbol{y} contains both b and c.
- Similarly, not possible that v contains both a and b.
- Similarly, not possible that v contains both \boldsymbol{b} and \boldsymbol{c}.
- If y contains only as, and v contains only $b s$, then... $\#_{(a)}(\tau) \neq \#_{(c)}(\tau)$. Not possible.
- Similarly, not possible that y contains only as, and v contains only cs. Similarly, not possible that \boldsymbol{y} contains only $b s$, and v contains only $c s$.
- Must be that $\tau \notin L$. A contradiction.
- We know:
$x y z v w=a^{j} b^{j} c^{j}$
$|y|+|v|>0$.
- We proved that $\boldsymbol{\tau}=x y^{2} z v^{2} w \in L$.
- If y contains both a and b, then, $\tau=\ldots a$...b...a...b.... Impossible, since $\tau \in L=\left\{a^{n} b^{n} c^{n} \mid n \geq 0\right\}$.
- Similarly, not possible that \boldsymbol{y} contains both b and c.
- Similarly, not possible that v contains both a and b.
- Similarly, not possible that v contains both b and c.
- If y contains only as, and v contains only $b s$, then... $\#_{(a)}(\tau) \neq \#_{(c)}(\tau)$. Not possible.
- Similarly, not possible that y contains only as, and v contains only cs. Similarly, not possible that \boldsymbol{y} contains only $b s$, and v contains only $c s$.
- Must be that $\tau \notin L$. A contradiction.

We conclude...

Lemma

The language $L=\left\{a^{n} b^{n} c^{n} \mid n \geq 0\right\}$ is not CFL (i.e., there is no CFG for it).

