7.5

CFGs; Proving a grammar generate a specific language

Inductive proofs for CFGs

Question: How do we formally prove that a $\operatorname{CFG} L(G)=L$?
Example: $S \rightarrow \epsilon|a| b|a S a| b S b$

Theorem

$L(G)=\{$ palindromes $\}=\left\{w \mid w=w^{R}\right\}$

Inductive proofs for CFGs

Question: How do we formally prove that a $\operatorname{CFG} L(G)=L$?
Example: $S \rightarrow \epsilon|a| b|a S a| b S b$

Theorem

$L(G)=\{$ palindromes $\}=\left\{w \mid w=w^{R}\right\}$
Two directions:

- $L(G) \subseteq L$, that is, $S w^{*} w$ then $w=w^{R}$
- $L \subseteq L(G)$, that is, $w=w^{R}$ then $S w^{*} w$

$\mathrm{L}(\mathrm{G}) \subseteq \mathrm{L}$

Show that if $S w^{*} w$ then $w=w^{R}$
By induction on length of derivation, meaning For all $k \geq 1, S \mathfrak{w}^{* k} w$ implies $w=w^{R}$.

```
- If \(S w^{1} w\) then \(w=\epsilon\) or \(w=a\) or \(w=b\). Each case \(w=w^{R}\)
```

- Assume that for all $k<n$, that if $S \rightarrow^{k} w$ then $w=w^{R}$
- Let $S \rightsquigarrow^{n} w$ (with $n>1$). Wlog w begin with a
- Then $S \rightarrow$ aSa w^{k-1} aua where $w=$ aua.
- And $S \rightsquigarrow^{n-1} u$ and hence $I H, u=u^{R}$.
- Therefore $w^{r}=(a u a)^{R}=(u a)^{R} a=a u^{R} a=a u a=w$

$\mathrm{L}(\mathrm{G}) \subseteq \mathrm{L}$

Show that if $S w^{*} w$ then $w=w^{R}$
By induction on length of derivation, meaning
For all $k \geq 1, S \sim^{* k} w$ implies $w=w^{R}$.

- If $S w^{1} w$ then $w=\epsilon$ or $w=a$ or $w=b$. Each case $w=w^{R}$.
- Assume that for all $k<n$, that if $S \rightarrow^{k} w$ then $w=w^{R}$
- Let $S \rightsquigarrow^{n} w$ (with $n>1$). Wlog w begin with a.
- Then $S \rightarrow a S a \rightsquigarrow^{k-1}$ aua where $\boldsymbol{w}=\boldsymbol{a u a}$.
- And $\boldsymbol{S} \rightsquigarrow^{\boldsymbol{n}-1} \boldsymbol{u}$ and hence $\mathrm{H}, \boldsymbol{u}=\boldsymbol{u}^{\boldsymbol{R}}$.
- Therefore $\boldsymbol{w}^{r}=(a u a)^{R}=(u a)^{R} a=a u^{R} a=a u a=w$.

$L \subseteq L(G)$

Show that if $w=w^{R}$ then $S w^{*} w$.
By induction on $|w|$
That is, for all $k \geq 0,|w|=k$ and $w=w^{R}$ implies $S w^{*} w$.
Exercise: Fill in proof.

Mutual Induction

Situation is more complicated with grammars that have multiple non-terminals.
See Section 5.3.2 of the notes for an example proof.

THE END

(for now)

