Algorithms & Models of Computation CS/ECE 374, Fall 2020

7.5 CFGS; Proving a grammar generate a specific language

Inductive proofs for CFGs

Question: How do we formally prove that a CFG L(G) = L?

Example: $S \rightarrow \epsilon \mid a \mid b \mid aSa \mid bSb$

Theorem

$$\mathit{L}(\mathit{G}) = \{\mathit{palindromes}\} = \{\mathit{w} \mid \mathit{w} = \mathit{w}^{\mathit{R}}\}$$

Two directions:

- $L(G) \subseteq L$, that is, $S \rightsquigarrow^* w$ then $w = w^R$
- $L \subseteq L(G)$, that is, $w = w^R$ then $S \rightsquigarrow w$

Inductive proofs for CFGs

Question: How do we formally prove that a CFG L(G) = L?

Example: $S \rightarrow \epsilon \mid a \mid b \mid aSa \mid bSb$

Theorem

$$\mathcal{L}(\mathcal{m{G}}) = \{ \mathit{palindromes} \} = \{ m{w} \mid m{w} = m{w}^{m{R}} \}$$

Two directions:

- $L(G) \subseteq L$, that is, $S \rightsquigarrow^* w$ then $w = w^R$
- $L \subseteq L(G)$, that is, $w = w^R$ then $S \rightsquigarrow w$

$L(G) \subseteq L$

Show that if $S \rightsquigarrow w$ then $w = w^R$

By induction on length of derivation, meaning For all $k \ge 1$, $S \sim^{*k} w$ implies $w = w^R$.

• If $S \rightsquigarrow^1 w$ then $w = \epsilon$ or w = a or w = b. Each case $w = w^R$.

- Assume that for all k < n, that if $S \rightarrow^k w$ then $w = w^R$
- Let $S \rightsquigarrow^n w$ (with n > 1). Wlog w begin with a.
 - Then $S \rightarrow aSa \rightsquigarrow^{k-1} aua$ where w = aua.
 - And $\boldsymbol{S} \rightsquigarrow^{\boldsymbol{n-1}} \boldsymbol{u}$ and hence IH, $\boldsymbol{u} = \boldsymbol{u}^{\boldsymbol{R}}$.
 - Therefore $w^r = (aua)^R = (ua)^R a = au^R a = aua = w$.

$L(G) \subseteq L$

Show that if $S \rightsquigarrow w$ then $w = w^R$

By induction on length of derivation, meaning For all $k \ge 1$, $S \rightsquigarrow^{*k} w$ implies $w = w^R$. • If $S \rightsquigarrow^1 w$ then $w = \epsilon$ or w = a or w = b. Each case $w = w^R$.

• Assume that for all k < n, that if $S \rightarrow^k w$ then $w = w^R$

- Let $S \rightsquigarrow^n w$ (with n > 1). Wlog w begin with a.
 - Then $S \rightarrow aSa \rightsquigarrow^{k-1} aua$ where w = aua.
 - And $\boldsymbol{S} \rightsquigarrow^{\boldsymbol{n-1}} \boldsymbol{u}$ and hence IH, $\boldsymbol{u} = \boldsymbol{u}^{\boldsymbol{R}}$.
 - Therefore $w^r = (aua)^R = (ua)^R a = au^R a = aua = w$.

$\mathsf{L}\subseteq\mathsf{L}(\mathsf{G})$

```
Show that if w = w^R then S \sim w.
```

```
By induction on |w|
That is, for all k \ge 0, |w| = k and w = w^R implies S \rightsquigarrow w.
```

Exercise: Fill in proof.

Mutual Induction

Situation is more complicated with grammars that have multiple non-terminals.

See Section 5.3.2 of the notes for an example proof.

THE END

(for now)

. . .