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Equivalences over automatas...

Claim (Just proved)

Let x, y be two distinct strings.
x ≡L y ⇐⇒ x, y are indistinguishable for L.

Corollary
If ≡L is finite with n equivalence classes then there is a fooling set F of size n for L.

Corollary
If ≡L has infinite number of equivalence classes =⇒ ∃ infinite fooling set for L.
=⇒ L is not regular.
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Equivalence classes as automata

Lemma
For all x, y ∈ Σ∗, if [x ]L = [y ]L, then for any a ∈ Σ, we have [xa]L = [ya]L.

Proof.
[x ] = [y ] =⇒ ∀w ∈ Σ∗: xw ∈ L ⇐⇒ yw ∈ L
=⇒ ∀w ′ ∈ Σ∗: xaw ′ ∈ L ⇐⇒ yaw ′ ∈ L // w = aw ′

=⇒ [xa]L = [ya]L.
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Set of equivalence classes

Lemma
If L has n distinct equivalence classes, then there is a DFA that accepts it using n
states.

Proof.
Set of states: Q = [L]
Start state: s = [ε]L.
Accept states: A = {[x ]L | x ∈ L}.
Transition function: δ([x ]L, a) = [xa]L.
M = (Q,Σ, δ, s,A): The resulting DFA.
Clearly, M is a DFA with n states, and it accepts L.
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Myhill-Nerode Theorem

Theorem (Myhill-Nerode)

L is regular ⇐⇒ ≡L has a finite number of equivalence classes.
If ≡L is finite with n equivalence classes then there is a DFA M accepting L with
exactly n states and this is the minimum possible.

Corollary
A language L is non-regular if and only if there is an infinite fooling set F for L.

Algorithmic implication: For every DFA M one can find in polynomial time a DFA
M ′ such that L(M) = L(M ′) and M ′ has the fewest possible states among all such
DFAs.
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What was that all about

Summary: A regular language L has a unique (up to naming) minimal automata, and it
can be computed efficiently once any DFA is given for L.
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Exercise

1 Given two DFAs M1,M2 describe an efficient algorithm to decide if
L(M1) = L(M2).

2 Given DFA M , and two states q, q′ of M , show an efficient algorithm to decide if
q and q′ are distinguishable. (Hint: Use the first part.)

3 Given a DFA M for a language L, describe an efficient algorithm for computing
the minimal automata (as far as the number of states) that accepts L.

Har-Peled (UIUC) CS374 59 Fall 2020 59 / 59


