Algorithms & Models of Computation CS/ECE 374, Fall 2020

6.5.2

Stating and proving the Myhill-Nerode Theorem

Claim (Just proved)

Let x, y be two distinct strings. $x \equiv_L y \iff x, y$ are indistinguishable for L.

Corollary

If \equiv_L is finite with **n** equivalence classes then there is a fooling set **F** of size **n** for **L**.

Corollary

If \equiv_{L} has infinite number of equivalence classes $\implies \exists$ infinite fooling set for **L**. \implies **L** is not regular.

Claim (Just proved)

Let x, y be two distinct strings.

 $x \equiv_L y \iff x, y$ are indistinguishable for **L**.

Corollary

If \equiv_L is finite with **n** equivalence classes then there is a fooling set **F** of size **n** for **L**.

Corollary

If \equiv_{L} has infinite number of equivalence classes $\implies \exists$ infinite fooling set for **L**. \implies **L** is not regular.

Claim (Just proved)

Let x, y be two distinct strings.

 $x \equiv_L y \iff x, y$ are indistinguishable for L.

Corollary

If \equiv_L is finite with n equivalence classes then there is a fooling set F of size n for L.

Corollary

If \equiv_{L} has infinite number of equivalence classes $\implies \exists$ infinite fooling set for L. $\implies L$ is not regular.

For all
$$x, y \in \Sigma^*$$
, if $[x]_L = [y]_L$, then for any $a \in \Sigma$, we have $[xa]_L = [ya]_L$.

$$\begin{aligned} [\mathbf{x}] &= [\mathbf{y}] \implies \forall w \in \Sigma^*: \ \mathbf{x}w \in \mathbf{L} \iff \mathbf{y}w \in \mathbf{L} \\ \implies \forall w' \in \Sigma^*: \ \mathbf{x}aw' \in \mathbf{L} \iff \mathbf{y}aw' \in \mathbf{L} \qquad // \ w = aw' \\ \implies [\mathbf{x}a]_{\mathbf{L}} = [\mathbf{y}a]_{\mathbf{L}}. \end{aligned}$$

For all
$$x, y \in \Sigma^*$$
, if $[x]_L = [y]_L$, then for any $a \in \Sigma$, we have $[xa]_L = [ya]_L$.

$$\begin{aligned} [x] &= [y] \implies \forall w \in \Sigma^* : xw \in L \iff yw \in L \\ \implies \forall w' \in \Sigma^* : xaw' \in L \iff yaw' \in L \qquad // w = aw' \\ \implies [xa]_L = [ya]_L. \end{aligned}$$

For all
$$x, y \in \Sigma^*$$
, if $[x]_L = [y]_L$, then for any $a \in \Sigma$, we have $[xa]_L = [ya]_L$.

$$[x] = [y] \implies \forall w \in \Sigma^*: xw \in L \iff yw \in L \implies \forall w' \in \Sigma^*: xaw' \in L \iff yaw' \in L \qquad //w = aw' \implies [xa]_L = [ya]_L$$

For all
$$x, y \in \Sigma^*$$
, if $[x]_L = [y]_L$, then for any $a \in \Sigma$, we have $[xa]_L = [ya]_L$.

$$\begin{aligned} [x] &= [y] \implies \forall w \in \Sigma^* : xw \in L \iff yw \in L \\ \implies \forall w' \in \Sigma^* : xaw' \in L \iff yaw' \in L \qquad // w = aw' \\ \implies [xa]_L = [ya]_L. \\ \end{aligned}$$

If **L** has **n** distinct equivalence classes, then there is a DFA that accepts it using **n** states.

Proof.

Set of states: Q = [L]Start state: $s = [\varepsilon]_L$. Accept states: $A = \{[x]_L \mid x \in L\}$. Transition function: $\delta([x]_L, a) = [xa]_L$. $M = (Q, \Sigma, \delta, s, A)$: The resulting DFA. Clearly, M is a DFA with n states, and it accepts L

If **L** has **n** distinct equivalence classes, then there is a DFA that accepts it using **n** states.

Proof.

Set of states: Q = [L]Start state: $s = [\varepsilon]_L$. Accept states: $A = \{[x]_L \mid x \in L\}$. Transition function: $\delta([x]_L, a) = [xa]_L$. $M = (Q, \Sigma, \delta, s, A)$: The resulting DFA. Clearly, M is a DFA with n states, and it accepts L.

If **L** has **n** distinct equivalence classes, then there is a DFA that accepts it using **n** states.

Proof.

Set of states: Q = [L]Start state: $s = [\varepsilon]_L$. Accept states: $A = \{[x]_L \mid x \in L\}$. Transition function: $\delta([x]_L, a) = [xa]_L$. $M = (Q, \Sigma, \delta, s, A)$: The resulting DFA. Clearly, M is a DFA with n states, and it accepts L.

If **L** has **n** distinct equivalence classes, then there is a DFA that accepts it using **n** states.

Proof.

Set of states: Q = [L]Start state: $s = [\varepsilon]_L$. Accept states: $A = \{[x]_L \mid x \in L\}$. Transition function: $\delta([x]_L, a) = [xa]_L$. $M = (Q, \Sigma, \delta, s, A)$: The resulting DFA. Clearly, M is a DFA with n states, and it accepts L

If **L** has **n** distinct equivalence classes, then there is a DFA that accepts it using **n** states.

Proof.

Set of states: Q = [L]Start state: $s = [\varepsilon]_L$. Accept states: $A = \{[x]_L \mid x \in L\}$. Transition function: $\delta([x]_L, a) = [xa]_L$. $M = (Q, \Sigma, \delta, s, A)$: The resulting DFA. Clearly, M is a DFA with n states, and it accepts I

If **L** has **n** distinct equivalence classes, then there is a DFA that accepts it using **n** states.

Proof.

Set of states: Q = [L]Start state: $s = [\varepsilon]_L$. Accept states: $A = \{[x]_L \mid x \in L\}$. Transition function: $\delta([x]_L, a) = [xa]_L$. $M = (Q, \Sigma, \delta, s, A)$: The resulting DFA. Clearly, M is a DFA with n states, and it accepts L.

Theorem (Myhill-Nerode)

L is regular $\iff \equiv_L$ has a finite number of equivalence classes. If \equiv_L is finite with *n* equivalence classes then there is a DFA *M* accepting *L* with exactly *n* states and this is the minimum possible.

Corollary

A language L is non-regular if and only if there is an infinite fooling set F for L.

Algorithmic implication: For every DFA M one can find in polynomial time a DFA M' such that L(M) = L(M') and M' has the fewest possible states among all such DFAs.

Summary: A regular language L has a unique (up to naming) minimal automata, and it can be computed efficiently once any DFA is given for L.

Exercise

- Given two DFAs M_1 , M_2 describe an efficient algorithm to decide if $L(M_1) = L(M_2)$.
- Q Given DFA *M*, and two states *q*, *q'* of *M*, show an efficient algorithm to decide if *q* and *q'* are distinguishable. (Hint: Use the first part.)
- Given a DFA M for a language L, describe an efficient algorithm for computing the minimal automata (as far as the number of states) that accepts L.