6.3.1
 Exponential gap in number of states between DFA and NFA sizes

Exponential gap between NFA and DFA size

$L_{4}=\left\{w \in\{0,1\}^{*} \mid w\right.$ has a 1 located 4 positions from the end $\}$

DFA:

Exponential gap between NFA and DFA size

$L_{k}=\left\{w \in\{0,1\}^{*} \mid w\right.$ has a $1 k$ positions from the end $\}$
Recall that L_{k} is accepted by a NFA N with $k+1$ states.
Theorem
Every DFA that accepts L_{k} has at least 2^{k} states
Claim
$\boldsymbol{F}=\left\{\boldsymbol{w} \in\{0,1\}^{*}:|w|=k\right\}$ is a fooling set of size 2^{k} for L_{k}
Why?

- Suppose $a_{1} a_{2} \ldots a_{k}$ and $b_{1} b_{2} \ldots b_{k}$ are two distinct bitstrings of length k
- Let i be first index where $a_{i} \neq b_{i}$
- $y=0^{k-i-1}$ is a distinguishing suffix for the two strings

Exponential gap between NFA and DFA size

$L_{k}=\left\{w \in\{0,1\}^{*} \mid w\right.$ has a $1 k$ positions from the end $\}$ Recall that $\boldsymbol{L}_{\boldsymbol{k}}$ is accepted by a NFA \boldsymbol{N} with $\boldsymbol{k}+1$ states.

Theorem

Every DFA that accepts L_{k} has at least 2^{k} states

\square

- Suppose $a_{1} a_{2} \ldots a_{k}$ and $b_{1} b_{2} \ldots b_{k}$ are two distinct bitstrings of length k
- Let i be first index where $a_{i} \neq b_{i}$
- $y=0^{k-i-1}$ is a distinguishing suffix for the two strings

Exponential gap between NFA and DFA size

$L_{k}=\left\{w \in\{0,1\}^{*} \mid w\right.$ has a $1 k$ positions from the end $\}$ Recall that L_{k} is accepted by a NFA \boldsymbol{N} with $k+1$ states.

Theorem

Every DFA that accepts L_{k} has at least 2^{k} states.

Exponential gap between NFA and DFA size

$L_{k}=\left\{w \in\{0,1\}^{*} \mid w\right.$ has a $1 k$ positions from the end $\}$
Recall that L_{k} is accepted by a NFA \boldsymbol{N} with $k+1$ states.

Theorem

Every DFA that accepts L_{k} has at least 2^{k} states.

Claim

$F=\left\{w \in\{0,1\}^{*}:|w|=k\right\}$ is a fooling set of size 2^{k} for L_{k}.
Why?

```
- Suppose }\mp@subsup{a}{1}{}\mp@subsup{a}{2}{}\ldots\mp@subsup{a}{k}{}\mathrm{ and }\mp@subsup{b}{1}{}\mp@subsup{b}{2}{}\ldots\mp@subsup{b}{k}{}\mathrm{ are two distinct bitstrings of length }
- Let i}\mathrm{ be first index where }\mp@subsup{a}{i}{}\not=\mp@subsup{b}{i}{
- v}=\mp@subsup{0}{}{k-i-1}\mathrm{ is a distinguishing suffix for the two strings
```


Exponential gap between NFA and DFA size

$L_{k}=\left\{w \in\{0,1\}^{*} \mid w\right.$ has a $1 k$ positions from the end $\}$
Recall that L_{k} is accepted by a NFA \boldsymbol{N} with $k+1$ states.

Theorem

Every DFA that accepts L_{k} has at least 2^{k} states.

Claim

$F=\left\{w \in\{0,1\}^{*}:|w|=k\right\}$ is a fooling set of size 2^{k} for L_{k}.
Why?

- Suppose $a_{1} a_{2} \ldots a_{k}$ and $b_{1} b_{2} \ldots b_{k}$ are two distinct bitstrings of length k
- Let \boldsymbol{i} be first index where $\boldsymbol{a}_{\boldsymbol{i}} \neq \boldsymbol{b}_{\boldsymbol{i}}$
- $y=0^{k-i-1}$ is a distinguishing suffix for the two strings

How do pick a fooling set

How do we pick a fooling set F ?

- If x, y are in F and $x \neq y$ they should be distinguishable! Of course.
- All strings in F except maybe one should be prefixes of strings in the language \boldsymbol{L}. For example if $L=\left\{0^{k} 1^{k} \mid k \geq 0\right\}$ do not pick 1 and 10 (say). Why?

THE END

(for now)

