Algorithms & Models of Computation CS/ECE 374, Fall 2020

6.3.1

Exponential gap in number of states between DFA and NFA sizes

Exponential gap between NFA and DFA size

 $L_{k} = \{ w \in \{0,1\}^{*} \mid w \text{ has a } 1 \text{ } k \text{ positions from the end} \}$ Recall that L_{k} is accepted by a NFA N with k + 1 states.

Theorem

Every DFA that accepts L_k has at least 2^k states.

Claim

$F = \{w \in \{0,1\}^* : |w| = k\}$ is a fooling set of size 2^k for L_k .

- Suppose $a_1a_2 \ldots a_k$ and $b_1b_2 \ldots b_k$ are two distinct bitstrings of length k
- Let *i* be first index where $a_i \neq b_i$
- $y = 0^{k-i-1}$ is a distinguishing suffix for the two strings

 $\begin{array}{l} {L_k} = \{w \in \{0,1\}^* \mid w \text{ has a } 1 \text{ } k \text{ positions from the end} \} \\ \text{Recall that } {L_k} \text{ is accepted by a NFA } N \text{ with } k+1 \text{ states.} \end{array}$

Theorem

Every DFA that accepts L_k has at least 2^k states.

Claim

$$F = \{w \in \{0,1\}^* : |w| = k\}$$
 is a fooling set of size 2^k for L_k .

- Suppose $a_1a_2 \ldots a_k$ and $b_1b_2 \ldots b_k$ are two distinct bitstrings of length k
- Let *i* be first index where $a_i \neq b_i$
- $y = 0^{k-i-1}$ is a distinguishing suffix for the two strings

 $L_k = \{w \in \{0,1\}^* \mid w \text{ has a } 1 \ k \text{ positions from the end}\}$ Recall that L_k is accepted by a NFA N with k + 1 states.

Theorem

Every DFA that accepts L_k has at least 2^k states.

Claim

$F = \{w \in \{0,1\}^* : |w| = k\}$ is a fooling set of size 2^k for L_k .

- Suppose $a_1a_2 \ldots a_k$ and $b_1b_2 \ldots b_k$ are two distinct bitstrings of length k
- Let *i* be first index where $a_i \neq b_i$
- $y = 0^{k-i-1}$ is a distinguishing suffix for the two strings

 $\begin{array}{l} {L_k} = \{w \in \{0,1\}^* \mid w \text{ has a } 1 \text{ } k \text{ positions from the end} \} \\ \text{Recall that } {L_k} \text{ is accepted by a NFA } N \text{ with } k+1 \text{ states.} \end{array}$

Theorem

Every DFA that accepts L_k has at least 2^k states.

Claim

 $F = \{w \in \{0,1\}^* : |w| = k\}$ is a fooling set of size 2^k for L_k .

- Suppose $a_1a_2 \ldots a_k$ and $b_1b_2 \ldots b_k$ are two distinct bitstrings of length k
- Let *i* be first index where $a_i \neq b_i$
- $y = 0^{k-i-1}$ is a distinguishing suffix for the two strings

 $\begin{array}{l} {L_k} = \{w \in \{0,1\}^* \mid w \text{ has a } 1 \text{ } k \text{ positions from the end} \} \\ \text{Recall that } {L_k} \text{ is accepted by a NFA } N \text{ with } k+1 \text{ states.} \end{array}$

Theorem

Every DFA that accepts L_k has at least 2^k states.

Claim

$$F = \{w \in \{0,1\}^* : |w| = k\}$$
 is a fooling set of size 2^k for L_k .

- Suppose $a_1a_2\ldots a_k$ and $b_1b_2\ldots b_k$ are two distinct bitstrings of length k
- Let *i* be first index where $a_i \neq b_i$
- $y = 0^{k-i-1}$ is a distinguishing suffix for the two strings

How do pick a fooling set

How do we pick a fooling set F?

- If x, y are in F and $x \neq y$ they should be distinguishable! Of course.
- All strings in F except maybe one should be prefixes of strings in the language L. For example if $L = \{0^k 1^k \mid k \ge 0\}$ do not pick 1 and 10 (say). Why?

THE END

(for now)

. . .