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Fooling sets: Proving non-regularity
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Fooling Sets

Definition
For a language L over Σ a set of strings F (could be infinite) is a fooling set or
distinguishing set for L if every two distinct strings x, y ∈ F are distinguishable.

Example: F = {0i | i ≥ 0} is a fooling set for the language L = {0k1k | k ≥ 0}.

Theorem
Suppose F is a fooling set for L. If F is finite then there is no DFA M that accepts L
with less than |F | states.
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Recall

Already proved the following lemma:

Lemma
L: regular language.
M = (Q,Σ, δ, s,A): DFA for L.
If x, y ∈ Σ∗ are distinguishable, then ∇x 6= ∇y .

Reminder: ∇x = δ∗(s, x).
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Proof of theorem

Theorem (Reworded.)

L: A language
F : a fooling set for L.
If F is finite then any DFA M that accepts L has at least |F | states.

Proof.
Let F = {w1,w2, . . . ,wm) be the fooling set.
Let M = (Q,Σ, δ, s,A) be any DFA that accepts L.
Let qi = ∇wi = δ∗(s, xi ).
By lemma qi 6= qj for all i 6= j .
As such, |Q| ≥ |{q1, . . . , qm}| = |{w1, . . . ,wm}| = |F |.

Har-Peled (UIUC) CS374 26 Fall 2020 26 / 59



Proof of theorem

Theorem (Reworded.)

L: A language
F : a fooling set for L.
If F is finite then any DFA M that accepts L has at least |F | states.

Proof.
Let F = {w1,w2, . . . ,wm) be the fooling set.
Let M = (Q,Σ, δ, s,A) be any DFA that accepts L.
Let qi = ∇wi = δ∗(s, xi ).
By lemma qi 6= qj for all i 6= j .
As such, |Q| ≥ |{q1, . . . , qm}| = |{w1, . . . ,wm}| = |F |.

Har-Peled (UIUC) CS374 26 Fall 2020 26 / 59



Proof of theorem

Theorem (Reworded.)

L: A language
F : a fooling set for L.
If F is finite then any DFA M that accepts L has at least |F | states.

Proof.
Let F = {w1,w2, . . . ,wm) be the fooling set.
Let M = (Q,Σ, δ, s,A) be any DFA that accepts L.
Let qi = ∇wi = δ∗(s, xi ).
By lemma qi 6= qj for all i 6= j .
As such, |Q| ≥ |{q1, . . . , qm}| = |{w1, . . . ,wm}| = |F |.

Har-Peled (UIUC) CS374 26 Fall 2020 26 / 59



Infinite Fooling Sets

Corollary
If L has an infinite fooling set F then L is not regular.

Proof.
Let w1,w2, . . . ⊆ F be an infinite sequence of strings such that every pair of them are
distinguishable.
Assume for contradiction that ∃ M a DFA for L.
Let Fi = {w1, . . . ,wi}.
By theorem, # states of M ≥ |Fi | = i , for all i .
As such, number of states in M is infinite.

Contradiction: DFA = deterministic finite automata. But M not finite.

Har-Peled (UIUC) CS374 27 Fall 2020 27 / 59



Infinite Fooling Sets

Corollary
If L has an infinite fooling set F then L is not regular.

Proof.
Let w1,w2, . . . ⊆ F be an infinite sequence of strings such that every pair of them are
distinguishable.
Assume for contradiction that ∃ M a DFA for L.
Let Fi = {w1, . . . ,wi}.
By theorem, # states of M ≥ |Fi | = i , for all i .
As such, number of states in M is infinite.

Contradiction: DFA = deterministic finite automata. But M not finite.

Har-Peled (UIUC) CS374 27 Fall 2020 27 / 59



Infinite Fooling Sets

Corollary
If L has an infinite fooling set F then L is not regular.

Proof.
Let w1,w2, . . . ⊆ F be an infinite sequence of strings such that every pair of them are
distinguishable.
Assume for contradiction that ∃ M a DFA for L.
Let Fi = {w1, . . . ,wi}.
By theorem, # states of M ≥ |Fi | = i , for all i .
As such, number of states in M is infinite.

Contradiction: DFA = deterministic finite automata. But M not finite.

Har-Peled (UIUC) CS374 27 Fall 2020 27 / 59



Examples

{0k1k | k ≥ 0}
{bitstrings with equal number of 0s and 1s}
{0k1` | k 6= `}
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Harder example: The language of squares is not regular

{0k2 | k ≥ 0}
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Really hard: Primes are not regular
An exercise left for your enjoyment{

0k
∣∣ k is a prime number

}
Hints:

1 Probably easier to prove directly on the automata.

2 There are infinite number of prime numbers.

3 For every n > 0, observe that n!, n! + 1, . . . , n! + n are all composite – there are
arbitrarily big gaps between prime numbers.
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THE END
...

(for now)
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