6.3
 Fooling sets: Proving non-regularity

Fooling Sets

Definition

For a language L over Σ a set of strings F (could be infinite) is a fooling set or distinguishing set for L if every two distinct strings $x, y \in F$ are distinguishable.
Example: $F=\left\{0^{i} \mid i \geq 0\right\}$ is a fooling set for the language $L=\left\{0^{k} 1^{k} \mid k \geq 0\right\}$

Theorem
 Suppose F is a fooling set for L. If F is finite then there is no DFA M that accepts L with less than $|F|$ states.

Fooling Sets

Definition

For a language L over Σ a set of strings F (could be infinite) is a fooling set or distinguishing set for L if every two distinct strings $x, y \in F$ are distinguishable.

Example: $F=\left\{0^{i} \mid i \geq 0\right\}$ is a fooling set for the language $L=\left\{0^{k} 1^{k} \mid k \geq 0\right\}$.

```
Theorem
Suppose F is a fooling set for L. If F is finite then there is no DFA M that accepts L
with less than |F| states.
```


Fooling Sets

Definition

For a language L over Σ a set of strings F (could be infinite) is a fooling set or distinguishing set for L if every two distinct strings $x, y \in F$ are distinguishable.

Example: $F=\left\{0^{i} \mid i \geq 0\right\}$ is a fooling set for the language $L=\left\{0^{k} 1^{k} \mid k \geq 0\right\}$.

Theorem

Suppose F is a fooling set for L. If F is finite then there is no DFA M that accepts L with less than $|F|$ states.

Recall

Already proved the following lemma:

Lemma

L: regular language.
$M=(\boldsymbol{Q}, \Sigma, \delta, s, \boldsymbol{A}):$ DFA for \boldsymbol{L}. If $x, y \in \Sigma^{*}$ are distinguishable, then $\nabla x \neq \nabla y$.

Reminder: $\nabla x=\delta^{*}(s, x)$.

Proof of theorem

Theorem (Reworded.)

L: A language
F : a fooling set for L.
If F is finite then any DFA M that accepts L has at least $|F|$ states.

Proof.

Let $F=\left\{w_{1}, w_{2}, \ldots, w_{m}\right)$ be the fooling set.
Let $M=(\boldsymbol{Q}, \Sigma, \delta, s, A)$ be any DFA that accepts L.

Proof of theorem

Theorem (Reworded.)

L: A language
F : a fooling set for L.
If F is finite then any DFA M that accepts L has at least $|F|$ states.

Proof.

Let $F=\left\{w_{1}, w_{2}, \ldots, w_{m}\right)$ be the fooling set.
Let $M=(\boldsymbol{Q}, \Sigma, \delta, s, A)$ be any DFA that accepts L.
Let $q_{i}=\nabla w_{i}=\delta^{*}\left(s, x_{i}\right)$.

Proof of theorem

Theorem (Reworded.)

L: A language
F : a fooling set for L.
If F is finite then any DFA M that accepts L has at least $|F|$ states.

Proof.

Let $F=\left\{w_{1}, w_{2}, \ldots, w_{m}\right)$ be the fooling set.
Let $M=(\boldsymbol{Q}, \Sigma, \delta, s, A)$ be any DFA that accepts L.
Let $q_{i}=\nabla w_{i}=\delta^{*}\left(s, x_{i}\right)$.
By lemma $\boldsymbol{q}_{\boldsymbol{i}} \neq \boldsymbol{q}_{\boldsymbol{j}}$ for all $\boldsymbol{i} \neq \boldsymbol{j}$.
As such, $|Q| \geq\left|\left\{q_{1}, \ldots, q_{m}\right\}\right|=\left|\left\{w_{1}, \ldots, w_{m}\right\}\right|=|F|$.

Infinite Fooling Sets

Corollary

If L has an infinite fooling set F then L is not regular.

Proof.

Let $w_{1}, w_{2}, \ldots \subseteq F$ be an infinite sequence of strings such that every pair of them are distinguishable.
Assume for contradiction that $\exists M$ a DFA for L.
Let $F_{i}=\left\{w_{1}\right.$
By theorem,
As such, numb
Contradiction:

Infinite Fooling Sets

Corollary

If L has an infinite fooling set F then L is not regular.

Proof.

Let $w_{1}, w_{2}, \ldots \subseteq F$ be an infinite sequence of strings such that every pair of them are distinguishable.
Assume for contradiction that $\exists M$ a DFA for L.
Let $F_{i}=\left\{w_{1}, \ldots, w_{i}\right\}$.
By theorem, \# states of $M \geq\left|F_{i}\right|=i$, for all i.
As such, number of states in M is infinite.

Infinite Fooling Sets

Corollary

If L has an infinite fooling set \boldsymbol{F} then L is not regular.

Proof.

Let $w_{1}, w_{2}, \ldots \subseteq F$ be an infinite sequence of strings such that every pair of them are distinguishable.
Assume for contradiction that $\exists M$ a DFA for L.
Let $F_{i}=\left\{w_{1}, \ldots, w_{i}\right\}$.
By theorem, \# states of $M \geq\left|F_{i}\right|=i$, for all i.
As such, number of states in M is infinite.
Contradiction: $\mathrm{DFA}=$ deterministic finite automata. But M not finite.

Examples

- $\left\{0^{k} 1^{k} \mid k \geq 0\right\}$
- \{bitstrings with equal number of 0 s and 1 s\}
- $\left\{0^{k} 1^{\ell} \mid k \neq \ell\right\}$

Examples

- $\left\{0^{k} 1^{k} \mid k \geq 0\right\}$
- \{bitstrings with equal number of 0 s and 1 s$\}$

Examples

- $\left\{0^{k} 1^{k} \mid k \geq 0\right\}$
- \{bitstrings with equal number of 0 s and 1 s$\}$
- $\left\{0^{k} 1^{\ell} \mid k \neq \ell\right\}$

Harder example: The language of squares is not regular

$$
\left\{0^{k^{2}} \mid k \geq 0\right\}
$$

Really hard: Primes are not regular

$\left\{0^{\boldsymbol{k}} \mid \boldsymbol{k}\right.$ is a prime number $\}$
Hints:
(1) Probably easier to prove directly on the automata.
(2) There are infinite number of prime numbers.
(3) For every $\boldsymbol{n}>0$, observe that $\boldsymbol{n}!, \boldsymbol{n}!+1, \ldots, \boldsymbol{n}$! $+\boldsymbol{n}$ are all composite - there are arbitrarily big gaps between prime numbers.

THE END

(for now)

