6.2 When two states are equivalent?

Equivalence between states

Definition

$M=(\boldsymbol{Q}, \Sigma, \delta, s, \boldsymbol{A})$: DFA.
Two states $\boldsymbol{p}, \boldsymbol{q} \in \boldsymbol{Q}$ are equivalent if for all strings $\boldsymbol{w} \in \Sigma^{*}$, we have that

$$
\delta^{*}(p, w) \in A \Longleftrightarrow \delta^{*}(q, w) \in A .
$$

One can merge any two states that are equivalent into a single state.

Distinguishing between states

Definition

$M=(\boldsymbol{Q}, \Sigma, \delta, s, \boldsymbol{A})$: DFA.
Two states $\boldsymbol{p}, \boldsymbol{q} \in Q$ are distinguishable if there exists a string $w \in \Sigma^{*}$, such that

$$
\delta^{*}(\boldsymbol{p}, \boldsymbol{w}) \in \boldsymbol{A} \quad \text { and } \quad \delta^{*}(\boldsymbol{q}, w) \notin A .
$$

or

$$
\delta^{*}(\boldsymbol{p}, \boldsymbol{w}) \notin \boldsymbol{A} \quad \text { and } \quad \delta^{*}(\boldsymbol{q}, \boldsymbol{w}) \in \boldsymbol{A} .
$$

Distinguishable prefixes

$M=(\boldsymbol{Q}, \Sigma, \delta, s, \boldsymbol{A}):$ DFA

Idea: Every string $w \in \Sigma^{*}$ defines a state $\nabla w=\delta^{*}(s, w)$.

Definition

Two strings $u, w \in \Sigma^{*}$ are distinguishable for M (or $L(M)$) if ∇u and ∇w are distinguishable.

Definition (Direct restatement)

Two prefixes $u, w \in \Sigma^{*}$ are distinguishable for a language L if there exists a string x such that $u x \in L$ and $w x \notin L$ (or $u x \notin L$ and $w x \in L$).

Distinguishable prefixes

$M=(\boldsymbol{Q}, \Sigma, \delta, s, A): D F A$
Idea: Every string $w \in \Sigma^{*}$ defines a state $\nabla w=\delta^{*}(s, w)$.

Definition

Two strings $u, w \in \Sigma^{*}$ are distinguishable for $M(\operatorname{or} L(M))$ if ∇u and ∇w are distinguishable.

Definition (Direct restatement)

Two prefixes $u, w \in \Sigma^{*}$ are distinguishable for a language L if there exists a string x such that $u x \in L$ and $w x \notin \bar{L}$ (or $u x \notin L$ and $w x \in L$).

Distinguishable prefixes

$M=(\boldsymbol{Q}, \Sigma, \delta, s, \boldsymbol{A}):$ DFA
Idea: Every string $w \in \Sigma^{*}$ defines a state $\nabla w=\delta^{*}(s, w)$.

Definition

Two strings $u, w \in \Sigma^{*}$ are distinguishable for $M(\operatorname{or} L(M))$ if ∇u and ∇w are distinguishable.

Definition (Direct restatement)

Two prefixes $u, w \in \Sigma^{*}$ are distinguishable for a language L if there exists a string x, such that $u x \in L$ and $w x \notin L$

Distinguishable prefixes

$M=(\boldsymbol{Q}, \Sigma, \delta, s, \boldsymbol{A}):$ DFA
Idea: Every string $w \in \Sigma^{*}$ defines a state $\nabla w=\delta^{*}(s, w)$.

Definition

Two strings $u, w \in \Sigma^{*}$ are distinguishable for $M(\operatorname{or} L(M))$ if ∇u and ∇w are distinguishable.

Definition (Direct restatement)

Two prefixes $u, w \in \Sigma^{*}$ are distinguishable for a language L if there exists a string x, such that $u x \in L$ and $w x \notin L$ (or $u x \notin L$ and $w x \in L$).

Distinguishable means different states

Lemma

L: regular language.
$M=(\boldsymbol{Q}, \Sigma, \delta, s, A):$ DFA for L.
If $x, y \in \Sigma^{*}$ are distinguishable, then $\nabla x \neq \nabla y$.

Reminder: $\nabla x=\delta^{*}(s, x) \in Q$ and $\nabla y=\delta^{*}(s, y) \in Q$

Proof by a figure

Distinguishable strings means different states: Proof

Lemma

L: regular language.
$M=(\boldsymbol{Q}, \Sigma, \delta, s, A):$ DFA for L.
If $x, y \in \Sigma^{*}$ are distinguishable, then $\nabla x \neq \nabla y$.

Proof.

Assume for the sake of contradiction that $\nabla \boldsymbol{x}=\nabla \boldsymbol{y}$.

Distinguishable strings means different states: Proof

Lemma

L: regular language.
$M=(\boldsymbol{Q}, \Sigma, \delta, s, A):$ DFA for L.
If $x, y \in \Sigma^{*}$ are distinguishable, then $\nabla x \neq \nabla y$.

Proof.

Assume for the sake of contradiction that $\nabla x=\nabla y$. By assumption $\exists w \in \Sigma^{*}$ such that $\nabla x w \in A$ and $\nabla y w \notin A$.

Distinguishable strings means different states: Proof

Lemma

L: regular language.
$M=(\boldsymbol{Q}, \Sigma, \delta, s, A):$ DFA for L.
If $x, y \in \Sigma^{*}$ are distinguishable, then $\nabla x \neq \nabla y$.

Proof.

Assume for the sake of contradiction that $\nabla x=\nabla y$.
By assumption $\exists w \in \Sigma^{*}$ such that $\nabla x w \in A$ and $\nabla y w \notin A$.
$\Longrightarrow \boldsymbol{A} \ni \nabla \boldsymbol{x w}=\boldsymbol{\delta}^{*}(\boldsymbol{s}, \mathbf{x w})=\boldsymbol{\delta}^{*}(\nabla \boldsymbol{x}, \boldsymbol{w})=\delta^{*}(\nabla y, w)$

Distinguishable strings means different states: Proof

Lemma

L: regular language.
$M=(\boldsymbol{Q}, \Sigma, \delta, s, A):$ DFA for L.
If $x, y \in \Sigma^{*}$ are distinguishable, then $\nabla x \neq \nabla y$.

Proof.

Assume for the sake of contradiction that $\nabla x=\nabla y$.
By assumption $\exists w \in \Sigma^{*}$ such that $\nabla x w \in A$ and $\nabla y w \notin A$.
$\Longrightarrow A \ni \nabla x w=\delta^{*}(s, x w)=\delta^{*}(\nabla x, w)=\delta^{*}(\nabla y, w)$

Distinguishable strings means different states: Proof

Lemma

L: regular language.
$M=(\boldsymbol{Q}, \Sigma, \delta, s, A):$ DFA for L.
If $x, y \in \Sigma^{*}$ are distinguishable, then $\nabla x \neq \nabla y$.

Proof.

Assume for the sake of contradiction that $\nabla x=\nabla y$.
By assumption $\exists w \in \Sigma^{*}$ such that $\nabla x w \in A$ and $\nabla y w \notin A$.
$\Longrightarrow A \ni \nabla x w=\delta^{*}(s, x w)=\delta^{*}(\nabla x, w)=\delta^{*}(\nabla y, w)$
$=\delta^{*}(s, y w)=\nabla y w \notin A$.
$\Longrightarrow A \ni \nabla y w \notin A$. Impossible!

Distinguishable strings means different states: Proof

Lemma

L: regular language.
$M=(\boldsymbol{Q}, \Sigma, \delta, s, A):$ DFA for L.
If $x, y \in \Sigma^{*}$ are distinguishable, then $\nabla x \neq \nabla y$.

Proof.

Assume for the sake of contradiction that $\nabla x=\nabla y$.
By assumption $\exists w \in \Sigma^{*}$ such that $\nabla x w \in A$ and $\nabla y w \notin A$.
$\Longrightarrow A \ni \nabla x w=\delta^{*}(s, x w)=\delta^{*}(\nabla x, w)=\delta^{*}(\nabla y, w)$
$=\delta^{*}(s, y w)=\nabla y w \notin A$.
$\Longrightarrow A \ni \nabla y w \notin A$. Impossible!

Distinguishable strings means different states: Proof

Lemma

L: regular language.
$M=(\boldsymbol{Q}, \Sigma, \delta, s, A):$ DFA for L.
If $x, y \in \Sigma^{*}$ are distinguishable, then $\nabla x \neq \nabla y$.

Proof.

Assume for the sake of contradiction that $\nabla x=\nabla y$.
By assumption $\exists w \in \Sigma^{*}$ such that $\nabla x w \in A$ and $\nabla y w \notin A$.
$\Longrightarrow A \ni \nabla x w=\delta^{*}(s, x w)=\delta^{*}(\nabla x, w)=\delta^{*}(\nabla y, w)$
$=\delta^{*}(s, y w)=\nabla y w \notin A$.
$\Longrightarrow A \ni \nabla y w \notin A$. Impossible!
Assumption that $\nabla x=\nabla y$ is false.

Review questions...

(c) Prove for any $\boldsymbol{i} \neq \boldsymbol{j}$ then 0^{i} and $0^{\boldsymbol{j}}$ are distinguishable for the language $\left\{0^{k} 1^{k} \mid k \geq 0\right\}$.
(2) Let L be a regular language, and let w_{1}, \ldots, w_{k} be strings that are all pairwise distinguishable for L. Prove that any DFA for L must have at least k states. (3) Prove that $\left\{0^{k} 1^{k} \mid k \geq 0\right\}$ is not regular

Review questions...

(1) Prove for any $\boldsymbol{i} \neq \boldsymbol{j}$ then 0^{i} and $0^{\boldsymbol{j}}$ are distinguishable for the language $\left\{0^{k} 1^{k} \mid k \geq 0\right\}$.
(2) Let L be a regular language, and let w_{1}, \ldots, w_{k} be strings that are all pairwise distinguishable for L. Prove that any DFA for L must have at least k states.

- Prove that $\left\{0^{k} 1^{k} \mid k \geq 0\right\}$ is not regular

Review questions...

(1) Prove for any $\boldsymbol{i} \neq \boldsymbol{j}$ then 0^{i} and 0^{j} are distinguishable for the language $\left\{0^{k} 1^{k} \mid k \geq 0\right\}$.
(2) Let L be a regular language, and let w_{1}, \ldots, w_{k} be strings that are all pairwise distinguishable for L. Prove that any DFA for L must have at least k states.
(0) Prove that $\left\{0^{k} 1^{k} \mid k \geq 0\right\}$ is not regular.

THE END

(for now)

