Algorithms & Models of Computation CS/ECE 374, Fall 2020

5.1.3

Proof of correctness of conversion of $\ensuremath{\operatorname{NFA}}$ to $\ensuremath{\operatorname{DFA}}$

Proof of Correctness

Theorem

Let $N = (Q, \Sigma, s, \delta, A)$ be a NFA and let $D = (Q', \Sigma, \delta', s', A')$ be a DFA constructed from N via the subset construction. Then L(N) = L(D).

Stronger claim:

Lemma

For every string w, $\delta^*_{N}(s, w) = \delta^*_{D}(s', w)$.

Proof by induction on |w|.

Proof of Correctness

Theorem

Let $N = (Q, \Sigma, s, \delta, A)$ be a NFA and let $D = (Q', \Sigma, \delta', s', A')$ be a DFA constructed from N via the subset construction. Then L(N) = L(D).

Stronger claim:

Lemma

For every string w, $\delta^*_{N}(s, w) = \delta^*_{D}(s', w)$.

Proof by induction on |w|.

Proof of Correctness

Theorem

Let $N = (Q, \Sigma, s, \delta, A)$ be a NFA and let $D = (Q', \Sigma, \delta', s', A')$ be a DFA constructed from N via the subset construction. Then L(N) = L(D).

Stronger claim:

Lemma

For every string w, $\delta_N^*(s, w) = \delta_D^*(s', w)$.

Proof by induction on |w|.

Proof continued I

Lemma

For every string w, $\delta_N^*(s, w) = \delta_D^*(s', w)$.

Proof:

Base case: $w = \epsilon$. $\delta_N^*(s, \epsilon) = \epsilon \operatorname{reach}(s)$. $\delta_D^*(s', \epsilon) = s' = \epsilon \operatorname{reach}(s)$ by definition of s'.

For every string w, $\delta^*_{N}(s, w) = \delta^*_{D}(s', w)$.

Inductive step: w = xa (Note: suffix definition of strings) $\delta_N^*(s, xa) = \bigcup_{p \in \delta_N^*(s,x)} \delta_N^*(p, a)$ by inductive definition of δ_N^* $\delta_D^*(s', xa) = \delta_D(\delta_D^*(s, x), a)$ by inductive definition of δ_D^*

By inductive hypothesis: $m{Y} = \delta^*_{N}(s,x) = \delta^*_{D}(s,x)$

Thus $\delta_N^*(s, xa) = \bigcup_{p \in Y} \delta_N^*(p, a) = \delta_D(Y, a)$ by definition of δ_D .

Therefore

For every string w, $\delta^*_{N}(s, w) = \delta^*_{D}(s', w)$.

Inductive step: w = xa (Note: suffix definition of strings) $\delta_N^*(s, xa) = \bigcup_{p \in \delta_N^*(s,x)} \delta_N^*(p, a)$ by inductive definition of δ_N^* $\delta_D^*(s', xa) = \delta_D(\delta_D^*(s, x), a)$ by inductive definition of δ_D^*

By inductive hypothesis: $Y = \delta^*_{N}(s, x) = \delta^*_{D}(s, x)$

Thus $\delta_N^*(s, xa) = \bigcup_{p \in Y} \delta_N^*(p, a) = \delta_D(Y, a)$ by definition of δ_D .

Therefore

For every string w, $\delta_N^*(s, w) = \delta_D^*(s', w)$.

Inductive step: w = xa (Note: suffix definition of strings) $\delta_N^*(s, xa) = \bigcup_{p \in \delta_N^*(s,x)} \delta_N^*(p, a)$ by inductive definition of δ_N^* $\delta_D^*(s', xa) = \delta_D(\delta_D^*(s, x), a)$ by inductive definition of δ_D^*

By inductive hypothesis: $m{Y}=\delta^*_{m{N}}(s,x)=\delta^*_{m{D}}(s,x)$

Thus $\delta_N^*(s, xa) = \bigcup_{p \in Y} \delta_N^*(p, a) = \delta_D(Y, a)$ by definition of δ_D .

Therefore

For every string w, $\delta_N^*(s, w) = \delta_D^*(s', w)$.

Inductive step: w = xa (Note: suffix definition of strings) $\delta_N^*(s, xa) = \bigcup_{p \in \delta_N^*(s,x)} \delta_N^*(p, a)$ by inductive definition of δ_N^* $\delta_D^*(s', xa) = \delta_D(\delta_D^*(s, x), a)$ by inductive definition of δ_D^*

By inductive hypothesis: $m{Y}=\delta^*_{m{N}}(s,x)=\delta^*_{m{D}}(s,x)$

Thus $\delta_N^*(s, xa) = \bigcup_{p \in Y} \delta_N^*(p, a) = \delta_D(Y, a)$ by definition of δ_D .

Therefore

For every string w, $\delta^*_{N}(s, w) = \delta^*_{D}(s', w)$.

Inductive step: w = xa (Note: suffix definition of strings) $\delta_N^*(s, xa) = \bigcup_{p \in \delta_N^*(s,x)} \delta_N^*(p, a)$ by inductive definition of δ_N^* $\delta_D^*(s', xa) = \delta_D(\delta_D^*(s, x), a)$ by inductive definition of δ_D^*

By inductive hypothesis: $m{Y}=\delta^*_{m{N}}(s,x)=\delta^*_{m{D}}(s,x)$

Thus $\delta_N^*(s, xa) = \bigcup_{p \in Y} \delta_N^*(p, a) = \delta_D(Y, a)$ by definition of δ_D .

Therefore,

THE END

(for now)

. . .