Algorithms & Models of Computation CS/ECE 374, Fall 2020

5.1.2 Algorithm for converting NFA to DFA

Recall I

Extending the transition function to strings

Definition

For NFA $N = (Q, \Sigma, \delta, s, A)$ and $q \in Q$ the $\epsilon \operatorname{reach}(q)$ is the set of all states that q can reach using only ϵ -transitions.

Definition

Inductive definition of $\delta^* : Q \times \Sigma^* \to \mathcal{P}(Q)$:

• if
$$w = \varepsilon$$
, $\delta^*(q, w) = \epsilon \operatorname{reach}(q)$
• if $w = a$ where $a \in \Sigma$: $\delta^*(q, a) = \epsilon \operatorname{reach}\left(\bigcup_{\substack{p \in \epsilon \operatorname{reach}(q) \\ p \in \epsilon \operatorname{reach}(q)}} \delta(p, a)\right)$
• if $w = ax$: $\delta^*(q, w) = \epsilon \operatorname{reach}\left(\bigcup_{\substack{p \in \epsilon \operatorname{reach}(q) \\ r \in \delta^*(p, a)}} \delta^*(r, x)\right)$

Recall II

Formal definition of language accepted by ${\sf N}$

Definition

A string w is accepted by NFA N if $\delta_N^*(s, w) \cap A \neq \emptyset$.

Definition

The language L(N) accepted by a NFA $N = (Q, \Sigma, \delta, s, A)$ is

$$\{ w \in \Sigma^* \mid \delta^*(s, w) \cap A \neq \emptyset \}.$$

NFA $N = (Q, \Sigma, s, \delta, A)$. We create a DFA $D = (Q', \Sigma, \delta', s', A')$ as follows: • $Q' = \mathcal{P}(Q)$

- $s' = \epsilon \operatorname{reach}(s) = \delta^*(s, \epsilon)$
- $A' = \{X \subseteq Q \mid X \cap A \neq \emptyset\}$
- $\delta'(X, a) = \cup_{q \in X} \delta^*(q, a)$ for each $X \subseteq Q$, $a \in \Sigma$.

- NFA $N = (Q, \Sigma, s, \delta, A)$. We create a DFA $D = (Q', \Sigma, \delta', s', A')$ as follows:
 - $Q' = \mathcal{P}(Q)$
 - $s' = \epsilon \operatorname{reach}(s) = \delta^*(s, \epsilon)$
 - $A' = \{X \subseteq Q \mid X \cap A \neq \emptyset\}$
 - $\delta'(X, a) = \cup_{q \in X} \delta^*(q, a)$ for each $X \subseteq Q$, $a \in \Sigma$.

- NFA $N = (Q, \Sigma, s, \delta, A)$. We create a DFA $D = (Q', \Sigma, \delta', s', A')$ as follows:
 - $Q' = \mathcal{P}(Q)$
 - $s' = \epsilon \operatorname{reach}(s) = \delta^*(s, \epsilon)$
 - $A' = \{X \subseteq Q \mid X \cap A \neq \emptyset\}$
 - $\delta'(X, a) = \cup_{q \in X} \delta^*(q, a)$ for each $X \subseteq Q$, $a \in \Sigma$.

- NFA $N = (Q, \Sigma, s, \delta, A)$. We create a DFA $D = (Q', \Sigma, \delta', s', A')$ as follows:
 - $Q' = \mathcal{P}(Q)$
 - $s' = \epsilon \operatorname{reach}(s) = \delta^*(s, \epsilon)$
 - $A' = \{X \subseteq Q \mid X \cap A \neq \emptyset\}$
 - $\delta'(X, a) = \cup_{q \in X} \delta^*(q, a)$ for each $X \subseteq Q$, $a \in \Sigma$.

Incremental construction

Only build states reachable from $s' = \epsilon \operatorname{reach}(s)$ the start state of **D**

An optimization: Incremental algorithm

- Build D beginning with start state $s' == \epsilon \operatorname{reach}(s)$
- For each existing state $X \subseteq Q$ consider each $a \in \Sigma$ and calculate the state $U = \delta'(X, a) = \bigcup_{q \in X} \delta^*(q, a)$ and add a transition.

To compute $m{Z_{q,a}} = m{\delta^*(q,a)}$ - set of all states reached from $m{q}$ on character $m{a}$

- Compute $X_1 = \epsilon \operatorname{reach}(q)$
- Compute $Y_1 = \cup_{\boldsymbol{p} \in \boldsymbol{X}_1} \delta(\boldsymbol{p}, \boldsymbol{a})$
- Compute $Z_{q,a} = \epsilon \operatorname{reach}(Y) = \bigcup_{r \in Y_1} \epsilon \operatorname{reach}(r)$

• If **U** is a new state add it to reachable states that need to be explored.

An optimization: Incremental algorithm

- Build D beginning with start state $s' == \epsilon \operatorname{reach}(s)$
- For each existing state $X \subseteq Q$ consider each $a \in \Sigma$ and calculate the state $U = \delta'(X, a) = \bigcup_{q \in X} \delta^*(q, a)$ and add a transition.

To compute $Z_{q,a} = \delta^*(q,a)$ - set of all states reached from q on character a

- Compute $X_1 = \epsilon \operatorname{reach}(q)$
- Compute $Y_1 = \cup_{\boldsymbol{p} \in \boldsymbol{X}_1} \delta(\boldsymbol{p}, \boldsymbol{a})$
- Compute $Z_{q,a} = \epsilon \operatorname{reach}(Y) = \cup_{r \in Y_1} \epsilon \operatorname{reach}(r)$

• If **U** is a new state add it to reachable states that need to be explored.

An optimization: Incremental algorithm

- Build D beginning with start state $s' == \epsilon \operatorname{reach}(s)$
- For each existing state $X \subseteq Q$ consider each $a \in \Sigma$ and calculate the state $U = \delta'(X, a) = \bigcup_{q \in X} \delta^*(q, a)$ and add a transition.

To compute $Z_{q,a} = \delta^*(q,a)$ - set of all states reached from q on character a

- Compute $X_1 = \epsilon \operatorname{reach}(q)$
- Compute $Y_1 = \cup_{m{p} \in X_1} \delta(m{p}, m{a})$
- Compute $Z_{q,a} = \epsilon \operatorname{reach}(Y) = \cup_{r \in Y_1} \epsilon \operatorname{reach}(r)$

• If **U** is a new state add it to reachable states that need to be explored.

THE END

(for now)

. . .