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5.1.2
Algorithm for converting NFA to DFA
FLNAME:5.1.2.0
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Recall I
Extending the transition function to strings

Definition
For NFA N = (Q,Σ, δ, s,A) and q ∈ Q the εreach(q) is the set of all states that q
can reach using only ε-transitions.

Definition
Inductive definition of δ∗ : Q × Σ∗ → P(Q):

if w = ε, δ∗(q,w) = εreach(q)

if w = a where a ∈ Σ: δ∗(q, a) = εreach
( ⋃

p∈εreach(q)

δ(p, a)
)

if w = ax : δ∗(q,w) = εreach
( ⋃

p∈εreach(q)

⋃

r∈δ∗(p,a)

δ∗(r , x)
)

15 / 42



Recall II
Formal definition of language accepted by N

Definition
A string w is accepted by NFA N if δ∗N(s,w) ∩ A 6= ∅.

Definition
The language L(N) accepted by a NFA N = (Q,Σ, δ, s,A) is

{w ∈ Σ∗ | δ∗(s,w) ∩ A 6= ∅}.
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Subset Construction

NFA N = (Q,Σ, s, δ,A). We create a DFA D = (Q′,Σ, δ′, s ′,A′) as follows:

Q′ = P(Q)

s ′ = εreach(s) = δ∗(s, ε)

A′ = {X ⊆ Q | X ∩ A 6= ∅}
δ′(X , a) = ∪q∈Xδ

∗(q, a) for each X ⊆ Q, a ∈ Σ.
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Incremental construction

Only build states reachable from s ′ = εreach(s) the start state of D

q0 q3

q1 ε 

q2

 1 

 0 

 ε 
{q0, q1}

{q2,q3}

{}

 0, 1 

{q3}

 0, 1

 1 

0

 0, 1 

δ′(X , a) = ∪q∈Xδ
∗(q, a).
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An optimization: Incremental algorithm

Build D beginning with start state s ′ == εreach(s)

For each existing state X ⊆ Q consider each a ∈ Σ and calculate the state
U = δ′(X , a) = ∪q∈Xδ

∗(q, a) and add a transition.

To compute Zq,a = δ∗(q, a) - set of all states reached from q on character a
I Compute X1 = εreach(q)
I Compute Y1 = ∪p∈X1δ(p, a)
I Compute Zq,a = εreach(Y ) = ∪r∈Y1εreach(r)

If U is a new state add it to reachable states that need to be explored.
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THE END
...

(for now)
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