Algorithms \& Models of Computation
 CS/ECE 374, Fall 2020
 5.1.2
 Algorithm for converting NFA to DFA

Recall I

Extending the transition function to strings

Definition

For NFA $\boldsymbol{N}=(\boldsymbol{Q}, \Sigma, \boldsymbol{\delta}, \boldsymbol{s}, \boldsymbol{A})$ and $\boldsymbol{q} \in \boldsymbol{Q}$ the $\boldsymbol{\epsilon r e a c h}(\boldsymbol{q})$ is the set of all states that \boldsymbol{q} can reach using only ϵ-transitions.

Definition

Inductive definition of $\delta^{*}: Q \times \Sigma^{*} \rightarrow \mathcal{P}(Q)$:

- if $w=\varepsilon, \delta^{*}(\boldsymbol{q}, \boldsymbol{w})=\boldsymbol{\epsilon r e a c h}(\boldsymbol{q})$
- if $w=a$ where $a \in \Sigma: \quad \delta^{*}(q, a)=\operatorname{creach}\left(\bigcup_{p \in \operatorname{\epsilon reach}(q)} \delta(p, a)\right)$
- if $w=a x$:

$$
\delta^{*}(q, w)=\operatorname{\epsilon reach}\left(\bigcup_{p \in \operatorname{ereach}(q)} \bigcup_{r \in \delta^{*}(p, a)} \delta^{*}(r, x)\right)
$$

Recall II

Formal definition of language accepted by N

Definition

A string w is accepted by NFA N if $\delta_{N}^{*}(s, w) \cap A \neq \emptyset$.

Definition

The language $L(N)$ accepted by a NFA $N=(Q, \Sigma, \delta, s, A)$ is

$$
\left\{w \in \Sigma^{*} \mid \delta^{*}(s, w) \cap A \neq \emptyset\right\}
$$

Subset Construction

NFA $\boldsymbol{N}=(\boldsymbol{Q}, \Sigma, s, \boldsymbol{\delta}, \boldsymbol{A})$. We create a DFA $\boldsymbol{D}=\left(\boldsymbol{Q}^{\prime}, \Sigma, \boldsymbol{\delta}^{\prime}, s^{\prime}, \boldsymbol{A}^{\prime}\right)$ as follows:

- $Q^{\prime}=\mathcal{P}(Q)$
- $s^{\prime}=\operatorname{\epsilon reach}(s)=\delta^{*}(s, \epsilon)$
- $A^{\prime}=\{X \subseteq Q \mid X \cap A \neq \emptyset\}$
- $\delta^{\prime}(X, a)=\cup_{q \in X} \delta^{*}(q, a)$ for each $X \subseteq Q, a \in \Sigma$.

Subset Construction

NFA $\boldsymbol{N}=(\boldsymbol{Q}, \Sigma, \boldsymbol{s}, \boldsymbol{\delta}, \boldsymbol{A})$. We create a DFA $\boldsymbol{D}=\left(Q^{\prime}, \Sigma, \boldsymbol{\delta}^{\prime}, s^{\prime}, A^{\prime}\right)$ as follows:

- $Q^{\prime}=\mathcal{P}(Q)$
- $s^{\prime}=\epsilon \operatorname{reach}(s)=\delta^{*}(s, \epsilon)$
- $A^{\prime}=\{X \subseteq Q \mid X \cap A \neq \emptyset\}$
- $\delta^{\prime}(X, a)=\cup_{q \in X} \delta^{*}(q, a)$ for each $X \subseteq Q$, $a \in \Sigma$.

Subset Construction

NFA $N=(Q, \Sigma, s, \boldsymbol{\delta}, \boldsymbol{A})$. We create a DFA $\boldsymbol{D}=\left(\boldsymbol{Q}^{\prime}, \Sigma, \boldsymbol{\delta}^{\prime}, \boldsymbol{s}^{\prime}, \boldsymbol{A}^{\prime}\right)$ as follows:

- $Q^{\prime}=\mathcal{P}(Q)$
- $s^{\prime}=\epsilon \operatorname{reach}(s)=\delta^{*}(s, \epsilon)$
- $A^{\prime}=\{X \subseteq Q \mid X \cap A \neq \emptyset\}$
- $\delta^{\prime}(X, a)=\cup_{q \in X} \delta^{*}(q, a)$ for each $X \subseteq Q$, $a \in \Sigma$.

Subset Construction

NFA $\boldsymbol{N}=(\boldsymbol{Q}, \Sigma, s, \boldsymbol{\delta}, \boldsymbol{A})$. We create a DFA $\boldsymbol{D}=\left(\boldsymbol{Q}^{\prime}, \Sigma, \boldsymbol{\delta}^{\prime}, s^{\prime}, \boldsymbol{A}^{\prime}\right)$ as follows:

- $Q^{\prime}=\mathcal{P}(Q)$
- $s^{\prime}=\epsilon \operatorname{reach}(s)=\delta^{*}(s, \epsilon)$
- $A^{\prime}=\{X \subseteq Q \mid X \cap A \neq \emptyset\}$
- $\delta^{\prime}(X, a)=\cup_{q \in X} \delta^{*}(q, a)$ for each $X \subseteq Q, a \in \Sigma$.

Incremental construction

Only build states reachable from $s^{\prime}=\boldsymbol{\epsilon r e a c h}(s)$ the start state of D

$$
\delta^{\prime}(X, a)=\cup_{q \in X} \delta^{*}(q, a)
$$

An optimization: Incremental algorithm

- Build D beginning with start state $s^{\prime}==\epsilon \operatorname{reach}(s)$
- For each existing state $\boldsymbol{X} \subseteq Q$ consider each $\boldsymbol{a} \in \Sigma$ and calculate the state $U=\boldsymbol{\delta}^{\prime}(X, a)=\cup_{q \in X} \boldsymbol{\delta}^{*}(q, a)$ and add a transition.

To compute $Z_{q, a}=\delta^{*}(q, a)$ - set of all states reached from q on character a

- Compute $\boldsymbol{X}_{1}=\boldsymbol{\epsilon r e a c h}(\boldsymbol{q})$
- Compute $\boldsymbol{Y}_{1}=\cup_{\boldsymbol{p} \in \boldsymbol{X}_{1}} \delta(\boldsymbol{p}, \boldsymbol{a})$
- Compute $Z_{q, a}=\operatorname{\epsilon reach}(\boldsymbol{Y})=\cup_{r \in Y_{1}}$ ereach (r)
- If \boldsymbol{U} is a new state add it to reachable states that need to be explored

An optimization: Incremental algorithm

- Build D beginning with start state $s^{\prime}==\epsilon \operatorname{reach}(s)$
- For each existing state $\boldsymbol{X} \subseteq Q$ consider each $a \in \Sigma$ and calculate the state $U=\boldsymbol{\delta}^{\prime}(X, a)=\cup_{q \in X} \boldsymbol{\delta}^{*}(\boldsymbol{q}, a)$ and add a transition.
To compute $\boldsymbol{Z}_{\boldsymbol{q}, \mathrm{a}}=\boldsymbol{\delta}^{*}(\boldsymbol{q}, \boldsymbol{a})$ - set of all states reached from \boldsymbol{q} on character \boldsymbol{a}
- Compute $\boldsymbol{X}_{1}=\boldsymbol{\operatorname { r r e a c h }}(\boldsymbol{q})$
- Compute $\boldsymbol{Y}_{1}=\cup_{p \in X_{1}} \boldsymbol{\delta}(\boldsymbol{p}, \boldsymbol{a})$
- Compute $\boldsymbol{Z}_{\boldsymbol{q}, \boldsymbol{a}}=\boldsymbol{\epsilon r e a c h}(\boldsymbol{Y})=\cup_{\boldsymbol{r} \in \boldsymbol{Y}_{1}} \boldsymbol{\epsilon r e a c h}(\boldsymbol{r})$
- If U is a new state add it to reachable states that need to be explored

An optimization: Incremental algorithm

- Build D beginning with start state $s^{\prime}==\epsilon \operatorname{reach}(s)$
- For each existing state $\boldsymbol{X} \subseteq Q$ consider each $a \in \Sigma$ and calculate the state $U=\boldsymbol{\delta}^{\prime}(X, a)=\cup_{q \in X} \boldsymbol{\delta}^{*}(\boldsymbol{q}, a)$ and add a transition.
To compute $\boldsymbol{Z}_{\boldsymbol{q}, \mathrm{a}}=\boldsymbol{\delta}^{*}(\boldsymbol{q}, \boldsymbol{a})$ - set of all states reached from \boldsymbol{q} on character \boldsymbol{a}
- Compute $\boldsymbol{X}_{1}=\boldsymbol{\operatorname { r r e a c h }}(\boldsymbol{q})$
- Compute $\boldsymbol{Y}_{1}=\cup_{p \in X_{1}} \boldsymbol{\delta}(\boldsymbol{p}, \boldsymbol{a})$
- Compute $\boldsymbol{Z}_{\boldsymbol{q}, \boldsymbol{a}}=\boldsymbol{\epsilon r e a c h}(\boldsymbol{Y})=\cup_{\boldsymbol{r} \in \boldsymbol{Y}_{1}} \boldsymbol{\epsilon r e a c h}(\boldsymbol{r})$
- If \boldsymbol{U} is a new state add it to reachable states that need to be explored.

THE END

(for now)

