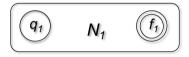
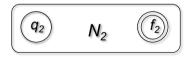
Algorithms & Models of Computation CS/ECE 374, Fall 2020

4.3 Closure Properties of NFAs

Closure properties of NFAs

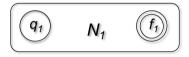

Are the class of languages accepted by NFAs closed under the following operations?

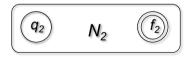

- union
- intersection
- concatenation
- Kleene star
- complement

Closure under union

Theorem

For any two NFAs N_1 and N_2 there is a NFA N such that $L(N) = L(N_1) \cup L(N_2)$.





Closure under union

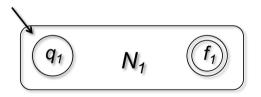
Theorem

For any two NFAs N_1 and N_2 there is a NFA N such that $L(N) = L(N_1) \cup L(N_2)$.

Closure under concatenation

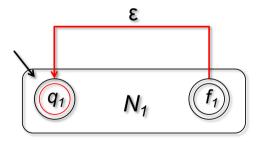
Theorem

For any two NFAs N_1 and N_2 there is a NFA N such that $L(N) = L(N_1) \bullet L(N_2)$.


Closure under concatenation

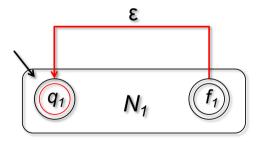
Theorem

For any two NFAs N_1 and N_2 there is a NFA N such that $L(N) = L(N_1) \bullet L(N_2)$.


Theorem

For any NFA N_1 there is a NFA N such that $L(N) = (L(N_1))^*$.

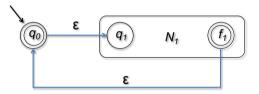
Theorem


For any NFA N_1 there is a NFA N such that $L(N) = (L(N_1))^*$.

Does not work! Why?

Theorem

For any NFA N_1 there is a NFA N such that $L(N) = (L(N_1))^*$.



Does not work! Why?

Har-Peled (UIUC)

Theorem

For any NFA N_1 there is a NFA N such that $L(N) = (L(N_1))^*$.

THE END

(for now)

. . .