Algorithms \& Models of Computation

4.2 Constructing NFAs

DFAs and NFAs

- Every DFA is a NFA so NFAs are at least as powerful as DFAs.
- NFAs prove ability to "guess and verify" which simplifies design and reduces number of states
- Easy proofs of some closure properties

Example

Strings that represent decimal numbers.

Example

Strings that represent decimal numbers.

Example

- \{strings that contain CS374 as a substring \}
- \{strings that contain CS374 or CS473 as a substring\}
- \{strings that contain CS374 and CS473 as substrings\}

Example

- \{strings that contain CS374 as a substring \}
- \{strings that contain CS374 or CS473 as a substring\} - \{strings that contain CS374 and CS473 as substrings\}

Example

- \{strings that contain CS374 as a substring \}
- \{strings that contain CS374 or CS473 as a substring\}
- \{strings that contain CS374 and CS473 as substrings

Example

$L_{k}=\{$ bitstrings that have a $1 k$ positions from the end $\}$

DFA for same task is much bigger...
$L_{4}=\{$ bitstrings that have a 1 in fourth position from the end $\}$

A simple transformation

Theorem

For every NFA N there is another NFA N^{\prime} such that $L(N)=L\left(N^{\prime}\right)$ and such that N^{\prime} has the following two properties:

- N^{\prime} has single final state \boldsymbol{f} that has no outgoing transitions
- The start state s of N is different from f

THE END

(for now)

