Non-deterministic Finite Automata (NFAs)

Lecture 4

Thursday, September 3, 2020

LATEXed: July 22, 2020 21:54

Algorithms & Models of Computation CS/ECE 374, Fall 2020

4.1 NFA Introduction

Non-deterministic Finite State Automata by example When you come to a fork in the road, take it.

Non-deterministic Finite State Automata by example II ..but only if it is made out of silver.

Non-deterministic Finite State Automata by example II ..but only if it is made out of silver.

Non-deterministic Finite State Automata by example II ..but only if it is made out of silver.

Fall 2020 4 / 52

Non-deterministic Finite State Automata (NFAs)

Differences from DFA

- From state q on same letter $a \in \Sigma$ multiple possible states
- No transitions from *q* on some letters
- ε -transitions!

Questions:

- Is this a "real" machine?
- What does it do?

Non-deterministic Finite State Automata (NFAs)

Differences from DFA

- From state q on same letter $a \in \Sigma$ multiple possible states
- No transitions from *q* on some letters
- ε-transitions!

Questions:

- Is this a "real" machine?
- What does it do?

Non-deterministic Finite State Automata (NFAs)

Differences from DFA

- From state q on same letter $a \in \Sigma$ multiple possible states
- No transitions from *q* on some letters
- ε-transitions!

Questions:

- Is this a "real" machine?
- What does it do?

- From q_{ε} on 1
- From q_{ϵ} on 0
- From q_0 on ε
- From q_{ε} on 01
- From *q*₀₀ on 00

- From q_{ϵ} on 1
- From q_{ε} on 0
- From q_0 on ε
- From q_{ε} on 01
- From *q*₀₀ on 00

- From q_{ϵ} on 1
- From q_{ϵ} on 0
- From q_0 on ε
- From q_{ε} on 01
- From *q*₀₀ on 00

- From q_{ϵ} on 1
- From q_{ϵ} on 0
- From q_0 on ε
- From q_{ε} on 01
- From *q*₀₀ on 00

- From q_{ϵ} on 1
- From q_{ϵ} on 0
- From \boldsymbol{q}_0 on $\boldsymbol{\varepsilon}$
- From q_{ϵ} on 01
- From *q*₀₀ on 00

- From q_{ϵ} on 1
- From q_{ϵ} on 0
- From \boldsymbol{q}_0 on $\boldsymbol{\varepsilon}$
- From q_{ϵ} on 01
- From *q*₀₀ on 00

NFA acceptance: informal

Informal definition: An NFA N accepts a string w iff some accepting state is reached by N from the start state on input w.

The language accepted (or recognized) by a NFA N is denote by L(N) and defined as: $L(N) = \{w \mid N \text{ accepts } w\}.$

NFA acceptance: informal

Informal definition: An NFA N accepts a string w iff some accepting state is reached by N from the start state on input w.

The language accepted (or recognized) by a NFA N is denote by L(N) and defined as: $L(N) = \{w \mid N \text{ accepts } w\}.$

• Is 01 accepted?

- Is 001 accepted?
- Is 100 accepted?
- Are all strings in 1*01 accepted?
- What is the language accepted by **N**?

- Is 01 accepted?
- Is 001 accepted?
- Is 100 accepted?
- Are all strings in 1*01 accepted?
- What is the language accepted by **N**?

- Is 01 accepted?
- Is 001 accepted?
- Is 100 accepted?
- Are all strings in 1*01 accepted?
- What is the language accepted by **N**?

- Is 01 accepted?
- Is 001 accepted?
- Is 100 accepted?
- Are all strings in 1*01 accepted?
- What is the language accepted by **N**?

- Is 01 accepted?
- Is 001 accepted?
- Is 100 accepted?
- Are all strings in 1*01 accepted?
- What is the language accepted by N?

- Is 01 accepted?
- Is 001 accepted?
- Is 100 accepted?
- Are all strings in 1*01 accepted?
- What is the language accepted by N?

- Is 01 accepted?
- Is 001 accepted?
- Is 100 accepted?
- Are all strings in 1*01 accepted?
- What is the language accepted by N?

ababa.

Idea: Keep track of the states where the NFA might be at any given time.

Remaining input: *ababa*.

Remaining input: **baba**.

Remaining input: **baba**.

Remaining input: *aba*.

Remaining input: *aba*.

Remaining input: ba.

Remaining input: **ba**.

Remaining input: a.

Remaining input: a.

Simulating NFAExample the first

Remaining input: *c*.

Remaining input: ε .

Accepts: *ababa*.

An exercise For you to think about...

A. What is the language that the following NFA accepts?

B. What is the minimal number of states in a DFA that recognizes the same language?

THE END

(for now)

. . .