3.1.1

Graphical representation of DFA

Graphical Representation/State Machine

- Directed graph with nodes representing states and edge/arcs representing transitions labeled by symbols in Σ
- For each state (vertex) \boldsymbol{q} and symbol $\boldsymbol{a} \in \Sigma$ there is exactly one outgoing edge labeled by a
- Initial/start state has a pointer (or labeled as $\boldsymbol{s}, \boldsymbol{q}_{0}$ or "start")
- Some states with double circles labeled as accepting/final states

Graphical Representation

- Where does 001 lead?
- Where does 10010 lead?
- Which strings end up in accepting state?
- Can you prove it?
- Every string w has a unique walk that it follows from a given state q by reading one letter of w from left to right

Graphical Representation

- Where does 001 lead?
- Where does 10010 lead?
- Which strings end up in accepting state?
- Can you prove it?
- Every string w has a unique walk that it follows from a given state q by reading one etter of w from left to right

Graphical Representation

- Where does 001 lead?
- Where does 10010 lead?
- Which strings end up in accepting state?
- Can you prove it?
- Every string w has a unique walk that it follows from a given state q by reading one letter of w from left to right

Graphical Representation

- Where does 001 lead?
- Where does 10010 lead?
- Which strings end up in accepting state?
- Can you prove it?
- Every string w has a unique walk that it follows from a given state q by reading

Graphical Representation

- Where does 001 lead?
- Where does 10010 lead?
- Which strings end up in accepting state?
- Can you prove it?
- Every string w has a unique walk that it follows from a given state \boldsymbol{q} by reading one letter of w from left to right.

Graphical Representation

Definition

A DFA M accepts a string w iff the unique walk starting at the start state and spelling out \boldsymbol{w} ends in an accepting state.

Definition

Graphical Representation

Definition

A DFA M accepts a string w iff the unique walk starting at the start state and spelling out \boldsymbol{w} ends in an accepting state.

Definition

-

Warning

" M accepts language L " does not mean simply that that M accepts each string in L.
It means that M accepts each string in L and no others. Equivalently M accepts each string in \boldsymbol{L} and does not accept/rejects strings in $\Sigma^{*} \backslash \boldsymbol{L}$.
M "recognizes" L is a better term but "accepts" is widely accepted (and recognized) (joke attributed to Lenny Pitt)

Warning

" M accepts language L " does not mean simply that that M accepts each string in L.
It means that M accepts each string in L and no others. Equivalently M accepts each string in \boldsymbol{L} and does not accept/rejects strings in $\Sigma^{*} \backslash \boldsymbol{L}$.
M "recognizes" L is a better term but "accepts" is widely accepted (and recognized) (joke attributed to Lenny Pitt)

THE END

(for now)

