Regular Expressions

A way to denote regular languages

- simple patterns to describe related strings
- useful in
- text search (editors, Unix/grep, emacs)
- compilers: lexical analysis
- compact way to represent interesting/useful languages
- dates back to 50's: Stephen Kleene who has a star names after him.

Inductive Definition

A regular expression r over an alphabet Σ is one of the following:

Base cases:

- \emptyset denotes the language \emptyset
- ϵ denotes the language $\{\epsilon\}$.
- a denote the language $\{a\}$.

Inductive cases: If r_{1} and r_{2} are regular expressions denoting languages R_{1} and \boldsymbol{R}_{2}

respectively then,

- $\left(r_{1}+r_{2}\right)$ denotes the language $R_{1} \cup R_{2}$
- $\left(r_{1} \bullet r_{2}\right)=r_{1} \bullet r_{2}=\left(r_{1} r_{2}\right)$ denotes the language $\boldsymbol{R}_{1} \boldsymbol{R}_{2}$
- $\left(r_{1}\right)^{*}$ denotes the language R_{1}^{*}

Inductive Definition

A regular expression r over an alphabet Σ is one of the following:

Base cases:

- \emptyset denotes the language \emptyset
- ϵ denotes the language $\{\epsilon\}$.
- a denote the language $\{a\}$.

Inductive cases: If r_{1} and r_{2} are regular expressions denoting languages \boldsymbol{R}_{1} and \boldsymbol{R}_{2} respectively then,

- $\left(r_{1}+r_{2}\right)$ denotes the language $R_{1} \cup R_{2}$
- $\left(r_{1} \bullet r_{2}\right)=r_{1} \bullet r_{2}=\left(r_{1} r_{2}\right)$ denotes the language $\boldsymbol{R}_{1} \boldsymbol{R}_{2}$
- $\left(r_{1}\right)^{*}$ denotes the language R_{1}^{*}

Regular Languages vs Regular Expressions

Regular Languages

\emptyset regular
$\{\epsilon\}$ regular
$\{a\}$ regular for $a \in \Sigma$
$R_{1} \cup R_{2}$ regular if both are
$R_{1} R_{2}$ regular if both are
R^{*} is regular if R is

Regular Expressions

```
\emptyset denotes \emptyset
\epsilon denotes {\epsilon}
a denote {a}
r
r
r* denote R*
```

Regular expressions denote regular languages - they explicitly show the operations that were used to form the language

Notation and Parenthesis

- For a regular expression $r, L(r)$ is the language denoted by r. Multiple regular expressions can denote the same language!
Example: $(0+1)$ and $(1+0)$ denote same language $\{0,1\}$
- Two regular expressions r_{1} and r_{2} are equivalent if $L\left(r_{1}\right)=L\left(r_{2}\right)$
- Omit parenthesis by adopting precedence order: *, concatenate

Example: $r^{*} s+t=\left(\left(r^{*}\right) s\right)+t$

- Omit parenthesis by associativity of each of these operations Example: $r s t=(r s) t=r(s t), r+s+t=r+(s+t)=(r+s)+t$.
- Superscript + . For convenience, define $r^{+}=r r^{*}$. Hence if $L(r)=R$ then
- Other notation: $r+s, r \cup s, r \mid s$ all denote union. $r s$ is sometimes written as $r \bullet s$.

Notation and Parenthesis

- For a regular expression $r, L(r)$ is the language denoted by r. Multiple regular expressions can denote the same language!
Example: $(0+1)$ and $(1+0)$ denote same language $\{0,1\}$
- Two regular expressions r_{1} and r_{2} are equivalent if $L\left(r_{1}\right)=L\left(r_{2}\right)$.
- Omit parenthesis by adopting precedence order: *, concatenate,

Example: $r^{*} s+t=\left(\left(r^{*}\right) s\right)+t$

- Omit parenthesis by associativity of each of these operations. Example: $r s t=(r s) t=r(s t), r+s+t=r+(s+t)=(r+s)+t$.
- Superscript + . For convenience, define $r^{+}=r r^{*}$. Hence if $L(r)=R$ then
- Other notation: $r+s, r \cup s, r \mid s$ all denote union. $r s$ is sometimes written as $r \bullet s$.

Notation and Parenthesis

- For a regular expression $r, L(r)$ is the language denoted by r. Multiple regular expressions can denote the same language!
Example: $(0+1)$ and $(1+0)$ denote same language $\{0,1\}$
- Two regular expressions r_{1} and r_{2} are equivalent if $L\left(r_{1}\right)=L\left(r_{2}\right)$.
- Omit parenthesis by adopting precedence order: $*$, concatenate, + . Example: $r^{*} \boldsymbol{s}+\boldsymbol{t}=\left(\left(r^{*}\right) \boldsymbol{s}\right)+\boldsymbol{t}$
- Omit parenthesis by associativity of each of these operations. Example: $r s t=(r s) t=r(s t), r+s+t=r+(s+t)=(r+s)+t$.
- Superscript + . For convenience, define $r^{+}=r r^{*}$. Hence if $L(r)=R$ then
- Other notation: $r+s, r \cup s, r \mid s$ all denote union. $r s$ is sometimes written as $r \bullet s$.

Notation and Parenthesis

- For a regular expression $r, L(r)$ is the language denoted by r. Multiple regular expressions can denote the same language!
Example: $(0+1)$ and $(1+0)$ denote same language $\{0,1\}$
- Two regular expressions r_{1} and r_{2} are equivalent if $L\left(r_{1}\right)=L\left(r_{2}\right)$.
- Omit parenthesis by adopting precedence order: $*$, concatenate, + . Example: $r^{*} \boldsymbol{s}+\boldsymbol{t}=\left(\left(r^{*}\right) \boldsymbol{s}\right)+\boldsymbol{t}$
- Omit parenthesis by associativity of each of these operations.

Example: $r s t=(r s) t=r(s t), r+s+t=r+(s+t)=(r+s)+t$.

- Superscript + . For convenience, define $r^{+}=r r^{*}$. Hence if $L(r)=R$ then
$L\left(r^{+}\right)=R^{+}$
- Other notation: $r+s, r \cup s, r \mid s$ all denote union. $r s$ is sometimes written as $r \circ s$.

Notation and Parenthesis

- For a regular expression $r, L(r)$ is the language denoted by r. Multiple regular expressions can denote the same language!
Example: $(0+1)$ and $(1+0)$ denote same language $\{0,1\}$
- Two regular expressions r_{1} and r_{2} are equivalent if $L\left(r_{1}\right)=L\left(r_{2}\right)$.
- Omit parenthesis by adopting precedence order: $*$, concatenate, + . Example: $r^{*} s+t=\left(\left(r^{*}\right) s\right)+t$
- Omit parenthesis by associativity of each of these operations. Example: $r s t=(r s) t=r(s t), r+s+t=r+(s+t)=(r+s)+t$.
- Superscript + . For convenience, define $\mathrm{r}^{+}=\mathrm{rr}^{*}$. Hence if $L(r)=R$ then $L\left(r^{+}\right)=R^{+}$.
- Other notation: $r+s, r \cup s, r \mid s$ all denote union. $r s$ is sometimes written as $r \bullet s$.

Notation and Parenthesis

- For a regular expression $r, L(r)$ is the language denoted by r. Multiple regular expressions can denote the same language!
Example: $(0+1)$ and $(1+0)$ denote same language $\{0,1\}$
- Two regular expressions r_{1} and r_{2} are equivalent if $L\left(r_{1}\right)=L\left(r_{2}\right)$.
- Omit parenthesis by adopting precedence order: $*$, concatenate, + . Example: $r^{*} s+t=\left(\left(r^{*}\right) s\right)+t$
- Omit parenthesis by associativity of each of these operations. Example: $r s t=(r s) t=r(s t), r+s+t=r+(s+t)=(r+s)+t$.
- Superscript + . For convenience, define $r^{+}=r r^{*}$. Hence if $L(r)=R$ then $L\left(r^{+}\right)=R^{+}$.
- Other notation: $r+s, r \cup s, r \mid s$ all denote union. $r s$ is sometimes written as $r \bullet s$.

Skills

- Given a language L "in mind" (say an English description) we would like to write a regular expression for L (if possible)
- Given a regular expression r we would like to "understand" $L(r)$ (say by giving an English description)

Skills

- Given a language L "in mind" (say an English description) we would like to write a regular expression for L (if possible)
- Given a regular expression r we would like to "understand" $L(r)$ (say by giving an English description)

THE END

(for now)

