Algorithms & Models of Computation CS/ECE 374, Fall 2020

2.2 Regular Expressions

Regular Expressions

A way to denote regular languages

- simple patterns to describe related strings
- useful in
 - text search (editors, Unix/grep, emacs)
 - compilers: lexical analysis
 - compact way to represent interesting/useful languages
 - dates back to 50's: Stephen Kleene who has a star names after him.

A regular expression r over an alphabet Σ is one of the following: Base cases:

- ϵ denotes the language $\{\epsilon\}$.
- a denote the language {a}.

Inductive cases: If r_1 and r_2 are regular expressions denoting languages R_1 and R_2 respectively then,

- $(\mathsf{r}_1 + \mathsf{r}_2)$ denotes the language $R_1 \cup R_2$
- $(r_1 \bullet r_2) = r_1 \bullet r_2 = (r_1 r_2)$ denotes the language $R_1 R_2$
- $(r_1)^*$ denotes the language R_1^*

A regular expression r over an alphabet Σ is one of the following: Base cases:

- \emptyset denotes the language \emptyset
- ϵ denotes the language $\{\epsilon\}$.
- a denote the language {a}.

Inductive cases: If r_1 and r_2 are regular expressions denoting languages R_1 and R_2 respectively then,

- $(r_1 + r_2)$ denotes the language $R_1 \cup R_2$
- $(r_1 \bullet r_2) = r_1 \bullet r_2 = (r_1 r_2)$ denotes the language $R_1 R_2$
- $(r_1)^*$ denotes the language R_1^*

Regular Languages vs Regular Expressions

Regular Languages

 \emptyset regular $\{\epsilon\}$ regular $\{a\}$ regular for $a \in \Sigma$ $R_1 \cup R_2$ regular if both are R_1R_2 regular if both are R^* is regular if R is

Regular Expressions

 \emptyset denotes \emptyset ϵ denotes $\{\epsilon\}$ a denote $\{a\}$ $r_1 + r_2$ denotes $R_1 \cup R_2$ $r_1 \cdot r_2$ denotes R_1R_2 r^* denote R^*

Regular expressions denote regular languages — they explicitly show the operations that were used to form the language

- For a regular expression r, L(r) is the language denoted by r. Multiple regular expressions can denote the same language!
 Example: (0 + 1) and (1 + 0) denote same language {0, 1}
- Two regular expressions r_1 and r_2 are equivalent if $L(r_1) = L(r_2)$.
- Omit parenthesis by adopting precedence order: *, concatenate, +.
 Example: r*s + t = ((r*)s) + t
- Omit parenthesis by associativity of each of these operations. **Example:** rst = (rs)t = r(st), r + s + t = r + (s + t) = (r + s) + t.
- Superscript +. For convenience, define $r^+ = rr^*$. Hence if L(r) = R then $L(r^+) = R^+$.
- Other notation: r + s, $r \cup s$, $r \mid s$ all denote union. rs is sometimes written as $r \bullet s$.

- For a regular expression r, L(r) is the language denoted by r. Multiple regular expressions can denote the same language!
 Example: (0 + 1) and (1 + 0) denote same language {0,1}
- Two regular expressions r_1 and r_2 are equivalent if $L(r_1) = L(r_2)$.
- Omit parenthesis by adopting precedence order: *, concatenate, +.
 Example: r*s + t = ((r*)s) + t
- Omit parenthesis by associativity of each of these operations. **Example:** rst = (rs)t = r(st), r + s + t = r + (s + t) = (r + s) + t.
- Superscript +. For convenience, define $r^+ = rr^*$. Hence if L(r) = R then $L(r^+) = R^+$.
- Other notation: r + s, $r \cup s$, $r \mid s$ all denote union. rs is sometimes written as $r \bullet s$.

- For a regular expression r, *L*(r) is the language denoted by r. Multiple regular expressions can denote the same language!
 Example: (0 + 1) and (1 + 0) denote same language {0,1}
- Two regular expressions r_1 and r_2 are equivalent if $L(r_1) = L(r_2)$.
- Omit parenthesis by adopting precedence order: *, concatenate, +. Example: $r^*s + t = ((r^*)s) + t$
- Omit parenthesis by associativity of each of these operations. **Example:** rst = (rs)t = r(st), r + s + t = r + (s + t) = (r + s) + t.
- Superscript +. For convenience, define $r^+ = rr^*$. Hence if L(r) = R then $L(r^+) = R^+$.
- Other notation: r + s, $r \cup s$, $r \mid s$ all denote union. rs is sometimes written as $r \bullet s$.

- For a regular expression r, *L*(r) is the language denoted by r. Multiple regular expressions can denote the same language!
 Example: (0 + 1) and (1 + 0) denote same language {0,1}
- Two regular expressions r_1 and r_2 are equivalent if $L(r_1) = L(r_2)$.
- Omit parenthesis by adopting precedence order: *, concatenate, +. Example: $r^*s + t = ((r^*)s) + t$
- Omit parenthesis by associativity of each of these operations. **Example:** rst = (rs)t = r(st), r + s + t = r + (s + t) = (r + s) + t.
- Superscript +. For convenience, define $r^+ = rr^*$. Hence if L(r) = R then $L(r^+) = R^+$.
- Other notation: r + s, $r \cup s$, $r \mid s$ all denote union. rs is sometimes written as $r \bullet s$.

- For a regular expression r, *L*(r) is the language denoted by r. Multiple regular expressions can denote the same language!
 Example: (0 + 1) and (1 + 0) denote same language {0,1}
- Two regular expressions r_1 and r_2 are equivalent if $L(r_1) = L(r_2)$.
- Omit parenthesis by adopting precedence order: *, concatenate, +. Example: $r^*s + t = ((r^*)s) + t$
- Omit parenthesis by associativity of each of these operations. **Example:** rst = (rs)t = r(st), r + s + t = r + (s + t) = (r + s) + t.
- Superscript +. For convenience, define $r^+ = rr^*$. Hence if L(r) = R then $L(r^+) = R^+$.

• Other notation: r + s, $r \cup s$, $r \mid s$ all denote union. rs is sometimes written as $r \cdot s$.

- For a regular expression r, *L*(r) is the language denoted by r. Multiple regular expressions can denote the same language!
 Example: (0 + 1) and (1 + 0) denote same language {0,1}
- Two regular expressions r_1 and r_2 are equivalent if $L(r_1) = L(r_2)$.
- Omit parenthesis by adopting precedence order: *, concatenate, +. Example: $r^*s + t = ((r^*)s) + t$
- Omit parenthesis by associativity of each of these operations. **Example:** rst = (rs)t = r(st), r + s + t = r + (s + t) = (r + s) + t.
- Superscript +. For convenience, define $r^+ = rr^*$. Hence if L(r) = R then $L(r^+) = R^+$.
- Other notation: r + s, $r \cup s$, $r \mid s$ all denote union. rs is sometimes written as $r \bullet s$.

- Given a language *L* "in mind" (say an English description) we would like to write a regular expression for *L* (if possible)
- Given a regular expression r we would like to "understand" *L*(r) (say by giving an English description)

- Given a language *L* "in mind" (say an English description) we would like to write a regular expression for *L* (if possible)
- Given a regular expression r we would like to "understand" L(r) (say by giving an English description)

THE END

(for now)

. . .