Regular Languages and Expressions

Lecture 2
Thursday, August 27, 2020
2.1

Regular Languages

Regular Languages

A class of simple but useful languages.
The set of regular languages over some alphabet Σ is defined inductively as:
(1) \emptyset is a regular language.
(2) $\{\epsilon\}$ is a regular language.
(3) $\{a\}$ is a regular language for each $a \in \Sigma$. Interpreting a as string of length 1 .
(9) If L_{1}, L_{2} are regular then $L_{1} \cup L_{2}$ is regular
(3) If L_{1}, L_{2} are regular then $L_{1} L_{2}$ is regular.
(0) If L is regular, then $L^{*}=\cup_{n>0} L^{n}$ is regular

The •* operator name is Kleene star
(0) If L is regular, then so is $\bar{L}=\Sigma^{*} \backslash L$.

Regular languages are closed under operations of union, concatenation and Kleene star

Regular Languages

A class of simple but useful languages.
The set of regular languages over some alphabet Σ is defined inductively as:
(1) \emptyset is a regular language.
(2) $\{\epsilon\}$ is a regular language.
(3) $\{a\}$ is a regular language for each $a \in \Sigma$. Interpreting a as string of length 1 .
(4) If L_{1}, L_{2} are regular then $L_{1} \cup L_{2}$ is regular.
(5) If L_{1}, L_{2} are regular then $L_{1} L_{2}$ is regular.
(0) If L is regular, then $L^{*}=\cup_{n \geq 0} L^{n}$ is regular

The •* operator name is Kleene star.
(a) If L is regular, then so is $\bar{L}=\Sigma^{*} \backslash L$.

Regular languages are closed under operations of union, concatenation and Kleene star.

Regular Languages

A class of simple but useful languages.
The set of regular languages over some alphabet Σ is defined inductively as:
(1) \emptyset is a regular language.
(2) $\{\epsilon\}$ is a regular language.
(3) $\{a\}$ is a regular language for each $a \in \Sigma$. Interpreting a as string of length 1 .
(9) If L_{1}, L_{2} are regular then $L_{1} \cup L_{2}$ is regular.
(5) If L_{1}, L_{2} are regular then $L_{1} L_{2}$ is regular.
(0) If L is regular, then $L^{*}=\cup_{n \geq 0} L^{n}$ is regular.

The •* operator name is Kleene star.
(0) If L is regular, then so is $\bar{L}=\Sigma^{*} \backslash L$.

Regular languages are closed under operations of union, concatenation and Kleene star.

Regular Languages

A class of simple but useful languages.
The set of regular languages over some alphabet Σ is defined inductively as:
(1) \emptyset is a regular language.
(2) $\{\epsilon\}$ is a regular language.
(3) $\{a\}$ is a regular language for each $a \in \Sigma$. Interpreting a as string of length 1 .
(4) If L_{1}, L_{2} are regular then $L_{1} \cup L_{2}$ is regular.
(5) If L_{1}, L_{2} are regular then $L_{1} L_{2}$ is regular.
(c) If L is regular, then $L^{*}=\cup_{n \geq 0} L^{n}$ is regular.

The •* operator name is Kleene star.
(0) If L is regular, then so is $\bar{L}=\Sigma^{*} \backslash L$.

Regular languages are closed under operations of union, concatenation and Kleene star.

Regular Languages

A class of simple but useful languages.
The set of regular languages over some alphabet Σ is defined inductively as:
(1) \emptyset is a regular language.
(2) $\{\epsilon\}$ is a regular language.
(3) $\{a\}$ is a regular language for each $a \in \Sigma$. Interpreting a as string of length 1 .
(4) If L_{1}, L_{2} are regular then $L_{1} \cup L_{2}$ is regular.
(5) If L_{1}, L_{2} are regular then $L_{1} L_{2}$ is regular.
(6) If L is regular, then $L^{*}=\cup_{n \geq 0} L^{n}$ is regular.

The .* operator name is Kleene star.
(7) If L is regular, then so is $\bar{L}=\Sigma^{*} \backslash L$.

Regular languages are closed under operations of union, concatenation and Kleene star.

Regular Languages

A class of simple but useful languages.
The set of regular languages over some alphabet Σ is defined inductively as:
(1) \emptyset is a regular language.
(2) $\{\epsilon\}$ is a regular language.
(3) $\{a\}$ is a regular language for each $a \in \Sigma$. Interpreting a as string of length 1 .
(9) If L_{1}, L_{2} are regular then $L_{1} \cup L_{2}$ is regular.
(5) If L_{1}, L_{2} are regular then $L_{1} L_{2}$ is regular.
(0) If L is regular, then $L^{*}=\cup_{n \geq 0} L^{n}$ is regular.

The ${ }^{*}$ operator name is Kleene star.
(3) If L is regular, then so is $\bar{L}=\Sigma^{*} \backslash L$.

Regular languages are closed under operations of union, concatenation and Kleene star.

Regular Languages

Have basic operations to build regular languages.
Important: Any language generated by a finite sequence of such operations is regular.

Lemma

Let L_{1}, L_{2}, \ldots, be regular languages over alphabet Σ. Then the language $\cup_{i=1}^{\infty} L_{i}$ is not necessarily regular.

Some simple regular languages

Lemma

If w is a string then $L=\{w\}$ is regular.
Example: \{aba\} or \{abbabbab\}. Why?

Lemma

Every finite language L is regular.
Examples: $L=\{a$, abaab, aba\}. $L=\{w| | w \mid \leq 100\}$. Why?

Some simple regular languages

Lemma

If w is a string then $L=\{w\}$ is regular.
Example: \{aba\} or \{abbabbab\}. Why?

Lemma

Every finite language L is regular.
Examples: $L=\{a, a b a a b, a b a\} . L=\{w| | w \mid \leq 100\}$. Why?

More Examples

- $\{\boldsymbol{w} \mid \boldsymbol{w}$ is a keyword in Python program $\}$
- $\{w \mid w$ is a valid date of the form $\mathrm{mm} / \mathrm{dd} / \mathrm{yy}\}$
- $\{\boldsymbol{w} \mid \boldsymbol{w}$ describes a valid Roman numeral $\}$ $\{I, I I, I I I, I V, V, V I, V I I, V I I I, I X, X, X I, \ldots\}$.
- $\{w \mid w$ contains "CS374" as a substring $\}$.

Review questions

(1) $L_{1} \subseteq\{0,1\}^{*}$ be a finite language. L_{1} is a set with finite number of strings. T / F ?
(2) $L_{2}=\left\{0^{i} \mid i=0,1, \ldots, \infty\right\}$. The language L_{2} is regular. T/F?
($L_{3}=\left\{0^{2 i} \mid \boldsymbol{i}=0,1, \ldots, \infty\right\}$. The language L_{3} is regular. T/F?
(1) $L_{4}=\left\{0^{17 i} \mid \boldsymbol{i}=0,1, \ldots, \infty\right\}$. The language L_{4} is regular. T/F?
(1) $L_{5}=\left\{0^{i} \mid \boldsymbol{i}\right.$ is not divisible by 17$\} . L_{5}$ is regular. T/F?
(-) $L_{6}=\left\{0^{\boldsymbol{i}} \mid \boldsymbol{i}\right.$ is divisible by 2,3 , or 5$\} . L_{6}$ is regular. T / F ?
(1) $L_{7}=\left\{0^{i} \mid \boldsymbol{i}\right.$ is divisible by 2,3 , and 5$\} . L_{7}$ is regular. T / F ?
($L_{8}=\left\{0^{i} \mid \boldsymbol{i}\right.$ is divisible by 2,3 , but not 5$\} . L_{8}$ is regular. T / F ?

- $L_{9}=\left\{0^{i} 1^{i} \mid \boldsymbol{i}\right.$ is divisible by 2,3 , but not 5$\}$. L_{9} is regular. T / F ?
(1) $L_{10}=\left\{w \in\{0,1\}^{*} \mid w\right.$ has at most 3741 s$\} . L_{10}$ is regular. T/F?

THE END

(for now)

