Regular Languages and Expressions

Lecture 2 Thursday, August 27, 2020

LATEXed: July 24, 2020 22:02

Algorithms & Models of Computation CS/ECE 374, Fall 2020

2.1 Regular Languages

A class of simple but useful languages.

The set of regular languages over some alphabet Σ is defined inductively as:

- Ø is a regular language.
- **2** $\{\epsilon\}$ is a regular language.
- **(a)** $\{a\}$ is a regular language for each $a \in \Sigma$. Interpreting a as string of length 1.
- If L_1, L_2 are regular then $L_1 \cup L_2$ is regular.

If L_1, L_2 are regular then L_1L_2 is regular.

• If L is regular, then $L^* = \bigcup_{n \ge 0} L^n$ is regular.

The \cdot^* operator name is **Kleene star**.

 $0 If L is regular, then so is <math>\overline{L} = \Sigma^* \setminus L.$

A class of simple but useful languages.

The set of regular languages over some alphabet Σ is defined inductively as:

- Ø is a regular language.
- **2** $\{\epsilon\}$ is a regular language.
- **(a)** $\{a\}$ is a regular language for each $a \in \Sigma$. Interpreting a as string of length 1.
- If L_1, L_2 are regular then $L_1 \cup L_2$ is regular.
- If L_1, L_2 are regular then L_1L_2 is regular.
- If L is regular, then $L^* = \bigcup_{n \ge 0} L^n$ is regular.

The \cdot^* operator name is **Kleene star**.

 $0 If L is regular, then so is <math>\overline{L} = \Sigma^* \setminus L.$

A class of simple but useful languages.

The set of regular languages over some alphabet Σ is defined inductively as:

- Ø is a regular language.
- **2** $\{\epsilon\}$ is a regular language.
- **(a)** $\{a\}$ is a regular language for each $a \in \Sigma$. Interpreting a as string of length 1.
- If L_1, L_2 are regular then $L_1 \cup L_2$ is regular.
- If L_1, L_2 are regular then L_1L_2 is regular.
- If *L* is regular, then $L^* = \bigcup_{n \ge 0} L^n$ is regular. The \cdot^* operator name is **Kleene star**.
- \bigcirc If *L* is regular, then so is $\overline{L} = \Sigma^* \setminus L$.

A class of simple but useful languages.

The set of regular languages over some alphabet Σ is defined inductively as:

- Ø is a regular language.
- **2** $\{\epsilon\}$ is a regular language.
- **(a)** $\{a\}$ is a regular language for each $a \in \Sigma$. Interpreting a as string of length 1.
- If L_1, L_2 are regular then $L_1 \cup L_2$ is regular.
- If L_1, L_2 are regular then L_1L_2 is regular.
- If *L* is regular, then $L^* = \bigcup_{n \ge 0} L^n$ is regular. The \cdot^* operator name is **Kleene star**.

If **L** is regular, then so is $\overline{L} = \Sigma^* \setminus L$.

A class of simple but useful languages.

The set of regular languages over some alphabet Σ is defined inductively as:

- Ø is a regular language.
- **2** $\{\epsilon\}$ is a regular language.
- **(a)** $\{a\}$ is a regular language for each $a \in \Sigma$. Interpreting a as string of length 1.
- If L_1, L_2 are regular then $L_1 \cup L_2$ is regular.
- If L_1, L_2 are regular then L_1L_2 is regular.
- If *L* is regular, then $L^* = \bigcup_{n \ge 0} L^n$ is regular. The \cdot^* operator name is Kleene star.
- If L is regular, then so is $\overline{L} = \Sigma^* \setminus L$.

A class of simple but useful languages.

The set of regular languages over some alphabet Σ is defined inductively as:

- Ø is a regular language.
- **2** $\{\epsilon\}$ is a regular language.
- **(a)** $\{a\}$ is a regular language for each $a \in \Sigma$. Interpreting a as string of length 1.
- If L_1, L_2 are regular then $L_1 \cup L_2$ is regular.
- If L_1, L_2 are regular then L_1L_2 is regular.
- If *L* is regular, then $L^* = \bigcup_{n \ge 0} L^n$ is regular. The \cdot^* operator name is Kleene star.
- If L is regular, then so is $\overline{L} = \Sigma^* \setminus L$.

Have basic operations to build regular languages. Important: Any language generated by a finite sequence of such operations is regular.

Lemma

Let L_1, L_2, \ldots , be regular languages over alphabet Σ . Then the language $\bigcup_{i=1}^{\infty} L_i$ is not necessarily regular.

Some simple regular languages

Lemma

If w is a string then $L = \{w\}$ is regular.

Example: {aba} or {abbabbab}. Why?

Lemma

Every finite language L is regular.

Examples: $L = \{a, abaab, aba\}$. $L = \{w \mid |w| \le 100\}$. Why?

Some simple regular languages

Lemma

If w is a string then $L = \{w\}$ is regular.

Example: {aba} or {abbabbab}. Why?

Lemma

Every finite language L is regular.

Examples: $L = \{a, abaab, aba\}$. $L = \{w \mid |w| \le 100\}$. Why?

More Examples

- $\{w \mid w \text{ is a keyword in Python program}\}$
- {w | w is a valid date of the form mm/dd/yy}
- {w | w describes a valid Roman numeral} {I, II, III, IV, V, VI, VII, VIII, IX, X, XI, ...}.
- {w | w contains "CS374" as a substring}.

Review questions

• $L_1 \subseteq \{0,1\}^*$ be a finite language. L_1 is a set with finite number of strings. T/F? • $L_2 = \{0^i \mid i = 0, 1, \dots, \infty\}$. The language L_2 is regular. T/F? • $L_3 = \{0^{2i} \mid i = 0, 1, \dots, \infty\}$. The language L_3 is regular. T/F? • $L_4 = \{0^{17i} \mid i = 0, 1, ..., \infty\}$. The language L_4 is regular. T/F? • $L_5 = \{0^i \mid i \text{ is not divisible by } 17\}$. L_5 is regular. T/F? • $L_6 = \{0^i \mid i \text{ is divisible by } 2, 3, \text{ or } 5\}$. L_6 is regular. T/F? • $L_7 = \{0^i \mid i \text{ is divisible by } 2, 3, \text{ and } 5\}$. L_7 is regular. T/F? • $L_8 = \{0^i \mid i \text{ is divisible by } 2, 3, \text{ but not } 5\}$. L_8 is regular. T/F? • $L_9 = \{0^i 1^i \mid i \text{ is divisible by } 2, 3, \text{ but not } 5\}$. L_9 is regular. T/F? **(**) $L_{10} = \{ w \in \{0, 1\}^* \mid w \text{ has at most 374 1s} \}$. L_{10} is regular. T/F?

THE END

(for now)

. . .