1.4

Languages

Languages

Definition

A language L is a set of strings over Σ. In other words $L \subseteq \Sigma^{*}$.
Standard set operations apply to languages.

- For languages A, B the concatenation of A, B is $A B=\{x y \mid x \in A, y \in B\}$
- For languages A, B, their union is $A \cup B$, intersection is $A \cap B$, and difference is $A \backslash B$ (also written as $A-B$)
- For language $A \subseteq \Sigma^{*}$ the complement of \boldsymbol{A} is $\bar{A}=\Sigma^{*} \backslash \boldsymbol{A}$.

Languages

Definition

A language L is a set of strings over Σ. In other words $L \subseteq \Sigma^{*}$.
Standard set operations apply to languages.

- For languages A, B the concatenation of A, B is $A B=\{x y \mid x \in A, y \in B\}$.
- For languages $\boldsymbol{A}, \boldsymbol{B}$, their union is $\boldsymbol{A} \cup \boldsymbol{B}$, intersection is $\boldsymbol{A} \cap \boldsymbol{B}$, and difference is $A \backslash B$ (also written as $A-B$).
- For language $\boldsymbol{A} \subseteq \Sigma^{*}$ the complement of \boldsymbol{A} is $\overline{\boldsymbol{A}}=\Sigma^{*} \backslash \boldsymbol{A}$.

Exponentiation, Kleene star etc

Definition

For a language $L \subseteq \Sigma^{*}$ and $n \in \mathbb{N}$, define L^{n} inductively as follows.

$$
L^{n}= \begin{cases}\{\epsilon\} & \text { if } n=0 \\ L \bullet\left(L^{n-1}\right) & \text { if } n>0\end{cases}
$$

And define $L^{*}=\cup_{n \geq 0} L^{n}$, and $L^{+}=\cup_{n \geq 1} L^{n}$

Exercise

Problem

Answer the following questions taking $A, B \subseteq\{0,1\}^{*}$.
(1) Is $\epsilon=\{\epsilon\}$? Is $\emptyset=\{\epsilon\}$?
(2) What is $\emptyset \bullet A$? What is $A \bullet \emptyset$?
(3) What is $\{\epsilon\} \bullet A$? And $A \bullet\{\epsilon\}$?
(4) If $|\boldsymbol{A}|=2$ and $|B|=3$, what is $|A \cdot B|$?

Exercise

Problem

Consider languages over $\Sigma=\{0,1\}$.
(1) What is \emptyset^{0} ?
(2) If $|L|=2$, then what is $\left|L^{4}\right|$?
(What is $\emptyset^{*},\{\epsilon\}^{*}, \epsilon^{*}$?
(9) For what L is L^{*} finite?
(0) What is $\emptyset^{+},\{\epsilon\}^{+}, \epsilon^{+}$?

Languages and Computation

What are we interested in computing? Mostly functions.
Informal definition: An algorithm \mathcal{A} computes a function $f: \Sigma^{*} \rightarrow \Sigma^{*}$ if for all $w \in \Sigma^{*}$ the algorithm \mathcal{A} on input w terminates in a finite number of steps and outputs $f(w)$.

Examples of functions:

- Numerical functions: length, addition, multiplication, division etc
- Given graph G and s, t find shortest paths from s to t
- Given program M check if M halts on empty input
- Posts Correspondence problem

Languages and Computation

Definition

A function f over Σ^{*} is a boolean if $f: \Sigma^{*} \rightarrow\{0,1\}$.

Observation: There is a bijection between boolean functions and languages.

- Given boolean function $f: \Sigma^{*} \rightarrow\{0,1\}$ define language $L_{f}=\left\{w \in \Sigma^{*} \mid f(w)=1\right\}$
- Given language $L \subseteq \Sigma^{*}$ define boolean function $f: \Sigma^{*} \rightarrow\{0,1\}$ as follows: $f(w)=1$ if $w \in L$ and $f(w)=0$ otherwise.

Languages and Computation

Definition

A function f over Σ^{*} is a boolean if $f: \Sigma^{*} \rightarrow\{0,1\}$.
Observation: There is a bijection between boolean functions and languages.

- Given boolean function $f: \Sigma^{*} \rightarrow\{0,1\}$ define language $L_{f}=\left\{w \in \Sigma^{*} \mid f(w)=1\right\}$
- Given language $L \subseteq \Sigma^{*}$ define boolean function $f: \Sigma^{*} \rightarrow\{0,1\}$ as follows: $f(w)=1$ if $w \in L$ and $f(w)=0$ otherwise.

Languages and Computation

Definition

A function f over Σ^{*} is a boolean if $f: \Sigma^{*} \rightarrow\{0,1\}$.
Observation: There is a bijection between boolean functions and languages.

- Given boolean function $\boldsymbol{f}: \Sigma^{*} \rightarrow\{0,1\}$ define language $L_{f}=\left\{w \in \Sigma^{*} \mid f(w)=1\right\}$
- Given language $L \subseteq \Sigma^{*}$ define boolean function $f: \Sigma^{*} \rightarrow\{0,1\}$ as follows: $f(w)=1$ if $w \in L$ and $f(w)=0$ otherwise.

Language recognition problem

Definition

For a language $L \subseteq \Sigma^{*}$ the language recognition problem associate with L is the following: given $w \in \Sigma^{*}$, is $w \in L$?

- Equivalent to the problem of "computing" the function f_{L}.
- Language recognition is same as boolean function computation
- How difficult is a function f to compute? How difficult is the recognizing L_{f} ? Why two different views? Helpful in understanding different aspects?

Language recognition problem

Definition

For a language $L \subseteq \Sigma^{*}$ the language recognition problem associate with L is the following: given $w \in \Sigma^{*}$, is $w \in L$?

- Equivalent to the problem of "computing" the function f_{L}.
- Language recognition is same as boolean function computation
- How difficult is a function f to compute? How difficult is the recognizing L_{f} ? Why two different views? Helpful in understanding different aspects?

Language recognition problem

Definition

For a language $L \subseteq \Sigma^{*}$ the language recognition problem associate with L is the following: given $w \in \Sigma^{*}$, is $w \in L$?

- Equivalent to the problem of "computing" the function f_{L}.
- Language recognition is same as boolean function computation
- How difficult is a function f to compute? How difficult is the recognizing L_{f} ? Why two different views? Helpful in understanding different aspects?

How many languages are there?

The answer my friend is blowing in the slides.

Recall:

Definition

An set \boldsymbol{X} is countable if there is a bijection f between the natural numbers and \boldsymbol{A}.

Theorem

Σ^{*} is countable for every finite Σ.
The set of all languages is $\mathbb{P}\left(\Sigma^{*}\right)$ the power set of Σ^{*}

Theorem (Cantor)

$\mathbb{P}\left(\Sigma^{*}\right)$ is not countable for any finite Σ.

How many languages are there?

The answer my friend is blowing in the slides.

Recall:

Definition

An set \boldsymbol{X} is countable if there is a bijection f between the natural numbers and \boldsymbol{A}.

Theorem

Σ^{*} is countable for every finite Σ.
The set of all languages is $\mathbb{P}\left(\Sigma^{*}\right)$ the power set of Σ^{*}

Theorem (Cantor)

$\mathbb{P}\left(\Sigma^{*}\right)$ is not countable for any finite Σ.

Cantor's diagonalization argument

Theorem (Cantor)

$\mathbb{P}(\mathbb{N})$ is not countable.

- Suppose $\mathbb{P}(\mathbb{N})$ is countable infinite. Let S_{1}, S_{2}, \ldots, be an enumeration of all subsets of numbers.
- Let \boldsymbol{D} be the following diagonal subset of numbers.

$$
D=\left\{i \mid i \notin S_{i}\right\}
$$

- Since \boldsymbol{D} is a set of numbers, by assumption, $\boldsymbol{D}=\boldsymbol{S}_{\boldsymbol{j}}$ for some \boldsymbol{j}.
- Question: Is $j \in D$?

Consequences for Computation

- How many C programs are there? The set of C programs is countable since each of them can be represented as a string over a finite alphabet.
- How many languages are there? Uncountably many!
- Hence some (in fact almost all!) languages/boolean functions do not have any C program to recognize them.

Questions:

- Maybe interesting languages/functions have C programs and hence computable. Only uninteresting languors uncomputable?
- Why should C programs be the definition of computability?
- Ok, there are difficult problems/languages. what languages are computable and which have efficient algorithms?

Consequences for Computation

- How many C programs are there? The set of C programs is countable since each of them can be represented as a string over a finite alphabet.
- How many languages are there? Uncountably many!
- Hence some (in fact almost all!) languages/boolean functions do not have any C program to recognize them.

Questions:

- Maybe interesting languages/functions have C programs and hence computable. Only uninteresting languors uncomputable?
- Why should C programs be the definition of computability?
- Ok, there are difficult problems/languages. what languages are computable and which have efficient algorithms?

Easy languages

Definition

A language $\boldsymbol{L} \subseteq \Sigma^{*}$ is finite if $|\boldsymbol{L}|=\boldsymbol{n}$ for some integer \boldsymbol{n}.
Exercise: Prove the following.

Theorem

The set of all finite languages is countable.

THE END

(for now)

