Algorithms & Models of Computation CS/ECE 374, Fall 2020

1.4 Languages

A language L is a set of strings over Σ . In other words $L \subseteq \Sigma^*$.

Standard set operations apply to languages.

- For languages A, B the concatenation of A, B is $AB = \{xy \mid x \in A, y \in B\}$.
- For languages A, B, their union is $A \cup B$, intersection is $A \cap B$, and difference is $A \setminus B$ (also written as A B).
- For language $A \subseteq \Sigma^*$ the complement of A is $\overline{A} = \Sigma^* \setminus A$.

A language L is a set of strings over Σ . In other words $L \subseteq \Sigma^*$.

Standard set operations apply to languages.

- For languages A, B the concatenation of A, B is $AB = \{xy \mid x \in A, y \in B\}$.
- For languages A, B, their union is $A \cup B$, intersection is $A \cap B$, and difference is $A \setminus B$ (also written as A B).
- For language $A \subseteq \Sigma^*$ the complement of A is $\overline{A} = \Sigma^* \setminus A$.

Exponentiation, Kleene star etc

Definition

For a language $L \subseteq \Sigma^*$ and $n \in \mathbb{N}$, define L^n inductively as follows.

$$\mathbf{L}^{n} = \begin{cases} \{\epsilon\} & \text{if } n = 0\\ \mathbf{L} \bullet (\mathbf{L}^{n-1}) & \text{if } n > 0 \end{cases}$$

And define $L^* = \bigcup_{n \ge 0} L^n$, and $L^+ = \bigcup_{n \ge 1} L^n$

Exercise

Problem

Answer the following questions taking $A, B \subseteq \{0, 1\}^*$.

- Is $\epsilon = \{\epsilon\}$? Is $\emptyset = \{\epsilon\}$?
- **2** What is $\emptyset \bullet A$? What is $A \bullet \emptyset$?
- What is $\{\epsilon\} \bullet A$? And $A \bullet \{\epsilon\}$?
- If $|\mathbf{A}| = 2$ and $|\mathbf{B}| = 3$, what is $|\mathbf{A} \cdot \mathbf{B}|$?

Exercise

Problem

Consider languages over $\Sigma = \{0, 1\}$.

- What is \emptyset^0 ?
- **2** If |L| = 2, then what is $|L^4|$?
- 3 What is \emptyset^* , $\{\epsilon\}^*$, ϵ^* ?
- For what L is L* finite?
- **(3)** What is \emptyset^+ , $\{\epsilon\}^+$, ϵ^+ ?

What are we interested in computing? Mostly functions.

Informal definition: An algorithm \mathcal{A} computes a function $f : \Sigma^* \to \Sigma^*$ if for all $w \in \Sigma^*$ the algorithm \mathcal{A} on input w terminates in a finite number of steps and outputs f(w).

Examples of functions:

- Numerical functions: length, addition, multiplication, division etc
- Given graph G and s, t find shortest paths from s to t
- Given program M check if M halts on empty input
- Posts Correspondence problem

Languages and Computation

Definition

A function f over Σ^* is a boolean if $f : \Sigma^* \to \{0, 1\}$.

Observation: There is a bijection between boolean functions and languages.

- Given boolean function f : Σ* → {0,1} define language
 L_f = {w ∈ Σ* | f(w) = 1}
- Given language L ⊆ Σ* define boolean function f : Σ* → {0,1} as follows: f(w) = 1 if w ∈ L and f(w) = 0 otherwise.

Languages and Computation

Definition

A function f over Σ^* is a boolean if $f : \Sigma^* \to \{0, 1\}$.

Observation: There is a bijection between boolean functions and languages.

Given boolean function f : Σ* → {0,1} define language
 L_f = {w ∈ Σ* | f(w) = 1}

 Given language L ⊆ Σ* define boolean function f : Σ* → {0,1} as follows: f(w) = 1 if w ∈ L and f(w) = 0 otherwise.

Languages and Computation

Definition

A function f over Σ^* is a boolean if $f : \Sigma^* \to \{0, 1\}$.

Observation: There is a bijection between boolean functions and languages.

• Given boolean function $f: \Sigma^* \to \{0, 1\}$ define language

 $L_f = \{ w \in \Sigma^* \mid f(w) = 1 \}$

Given language L ⊆ Σ* define boolean function f : Σ* → {0, 1} as follows:
 f(w) = 1 if w ∈ L and f(w) = 0 otherwise.

For a language $L \subseteq \Sigma^*$ the language recognition problem associate with L is the following: given $w \in \Sigma^*$, is $w \in L$?

- Equivalent to the problem of "computing" the function f_L .
- Language recognition is same as boolean function computation
- How difficult is a function *f* to compute? How difficult is the recognizing *L_f*? Why two different views? Helpful in understanding different aspects?

For a language $L \subseteq \Sigma^*$ the language recognition problem associate with L is the following: given $w \in \Sigma^*$, is $w \in L$?

- Equivalent to the problem of "computing" the function f_L .
- Language recognition is same as boolean function computation
- How difficult is a function f to compute? How difficult is the recognizing L_f ?

Why two different views? Helpful in understanding different aspects?

For a language $L \subseteq \Sigma^*$ the language recognition problem associate with L is the following: given $w \in \Sigma^*$, is $w \in L$?

- Equivalent to the problem of "computing" the function f_L .
- Language recognition is same as boolean function computation
- How difficult is a function f to compute? How difficult is the recognizing L_f ?

Why two different views? Helpful in understanding different aspects?

How many languages are there? The answer my friend is blowing in the slides.

Recall:

Definition

An set X is countable if there is a bijection f between the natural numbers and A.

Theorem

 Σ^* is countable for every finite Σ .

The set of all languages is $\mathbb{P}(\Sigma^*)$ the power set of Σ^*

Theorem (Cantor)

 $\mathbb{P}(\Sigma^*)$ is **not** countable for any finite Σ .

How many languages are there?

The answer my friend is blowing in the slides.

Recall:

Definition

An set X is countable if there is a bijection f between the natural numbers and A.

Theorem

 Σ^* is countable for every finite Σ .

The set of all languages is $\mathbb{P}(\Sigma^*)$ the power set of Σ^*

Theorem (Cantor)

 $\mathbb{P}(\Sigma^*)$ is **not** countable for any finite Σ .

Cantor's diagonalization argument

Theorem (Cantor)

 $\mathbb{P}(\mathbb{N})$ is not countable.

- Suppose ℙ(ℕ) is countable infinite. Let S₁, S₂,..., be an enumeration of all subsets of numbers.
- Let **D** be the following diagonal subset of numbers.

 $D = \{i \mid i \not\in S_i\}$

- Since **D** is a set of numbers, by assumption, $D = S_j$ for some j.
- Question: Is $j \in D$?

Consequences for Computation

- How many *C* programs are there? The set of *C* programs is countable since each of them can be represented as a string over a finite alphabet.
- How many languages are there? Uncountably many!
- Hence some (in fact almost all!) languages/boolean functions do not have any *C* program to recognize them.

Questions:

- Maybe interesting languages/functions have *C* programs and hence computable. Only uninteresting languors uncomputable?
- Why should *C* programs be the definition of computability?
- Ok, there are difficult problems/languages. what languages are computable and which have efficient algorithms?

Consequences for Computation

- How many *C* programs are there? The set of *C* programs is countable since each of them can be represented as a string over a finite alphabet.
- How many languages are there? Uncountably many!
- Hence some (in fact almost all!) languages/boolean functions do not have any *C* program to recognize them.

Questions:

- Maybe interesting languages/functions have *C* programs and hence computable. Only uninteresting languors uncomputable?
- Why should *C* programs be the definition of computability?
- Ok, there are difficult problems/languages. what languages are computable and which have efficient algorithms?

Easy languages

Definition

A language $L \subseteq \Sigma^*$ is finite if |L| = n for some integer n.

Exercise: Prove the following.

Theorem

The set of all finite languages is countable.

THE END

(for now)

. . .