Algorithms & Models of Computation CS/ECE 374, Fall 2020

1.2

Countable sets, countably infinite sets, and languages

A set X is countable, if its elements can be counted. There exists an injective mapping from X to natural numbers $N = \{1, 2, 3, \ldots\}$.

Example

All finite sets are countable: { aba, ima, saba, safta, uma, upa }.

Example

 $\mathbb{N} imes\mathbb{N}=\{(\pmb{i},\pmb{j})\mid \pmb{i},\pmb{j}\in\mathbb{N}\}$ is countable.

: Proof: $f(i,j) = 2^i 3^j$.

A set X is countable, if its elements can be counted. There exists an injective mapping from X to natural numbers $N = \{1, 2, 3, \ldots\}$.

Example

All finite sets are countable: { aba, ima, saba, safta, uma, upa }.

Example

 $\mathbb{N} imes\mathbb{N}=\{(\pmb{i},\pmb{j})\mid \pmb{i},\pmb{j}\in\mathbb{N}\}$ is countable.

: Proof: $f(i,j) = 2^i 3^j$.

A set X is countable, if its elements can be counted. There exists an injective mapping from X to natural numbers $N = \{1, 2, 3, \ldots\}$.

Example

All finite sets are countable: { aba, ima, saba, safta, uma, upa }.

Example

 $\mathbb{N} \times \mathbb{N} = \{(i, j) \mid i, j \in \mathbb{N}\}$ is countable.

: Proof: $f(i,j) = 2^i 3^j$.

A set X is countable, if its elements can be counted. There exists an injective mapping from X to natural numbers $N = \{1, 2, 3, \ldots\}$.

Example

All finite sets are countable: { aba, ima, saba, safta, uma, upa }.

Example

 $\mathbb{N} \times \mathbb{N} = \{(i, j) \mid i, j \in \mathbb{N}\}$ is countable.

: Proof: $f(i,j) = 2^{i}3^{j}$.

$\mathbb{N} \times \mathbb{N}$ is countable

- • • • •
-
-
-
-
-
-
-

$\mathbb{N}\times\mathbb{N}$ is countable

Canonical order and countability of strings

Definition

A set X is countably infinite (countable and infinite) if there is a bijection f between the natural numbers and X.

Alternatively: X is countably infinite if X is an infinite set and there enumeration of elements of X.

Theorem

Σ^* is countable for any finite Σ .

Enumerate strings in order of increasing length and for each given length enumerate strings in dictionary order (based on some fixed ordering of Σ).

Example: $\{0, 1\}^* = \{\epsilon, 0, 1, 00, 01, 10, 11, 000, 001, 010, \ldots\}$. $\{a, b, c\}^* = \{\epsilon, a, b, c, aa, ab, ac, ba, bb, bc, \ldots\}$

Theorem

 Σ^* is countable for any finite Σ .

Enumerate strings in order of increasing length and for each given length enumerate strings in dictionary order (based on some fixed ordering of Σ).

Example: $\{0,1\}^* = \{\epsilon, 0, 1, 00, 01, 10, 11, 000, 001, 010, \ldots\}$. $\{a, b, c\}^* = \{\epsilon, a, b, c, aa, ab, ac, ba, bb, bc, \ldots\}$

Theorem

 Σ^* is countable for any finite Σ .

Enumerate strings in order of increasing length and for each given length enumerate strings in dictionary order (based on some fixed ordering of Σ).

Example: $\{0,1\}^* = \{\epsilon, 0, 1, 00, 01, 10, 11, 000, 001, 010, \ldots\}$. $\{a, b, c\}^* = \{\epsilon, a, b, c, aa, ab, ac, ba, bb, bc, \ldots\}$

Theorem

 Σ^* is countable for any finite Σ .

Enumerate strings in order of increasing length and for each given length enumerate strings in dictionary order (based on some fixed ordering of Σ).

Example: $\{0, 1\}^* = \{\epsilon, 0, 1, 00, 01, 10, 11, 000, 001, 010, \ldots\}$. $\{a, b, c\}^* = \{\epsilon, a, b, c, aa, ab, ac, ba, bb, bc, \ldots\}$

Exercise I

Question: Is $\Sigma^* \times \Sigma^* = \{(x, y) \mid x, y \in \Sigma^*\}$ countable?

Question: Is $\Sigma^* \times \Sigma^* \times \Sigma^* = \{(x, y, z) \mid x, y, x \in \Sigma^*\}$ countable?

Exercise I

Question: Is $\Sigma^* \times \Sigma^* = \{(x, y) \mid x, y \in \Sigma^*\}$ countable?

Question: Is $\Sigma^* \times \Sigma^* \times \Sigma^* = \{(x, y, z) \mid x, y, x \in \Sigma^*\}$ countable?

Exercise II

Answer the following questions taking $\Sigma = \{0, 1\}$.

- Is a finite set countable?
- **2** X is countable, and the set $Y \subseteq X$, then is the set Y countable?
- **③** If X and Y are countable, is $X \setminus Y$ countable?
- Are all infinite sets countably infinite?
- **(5)** If X_i is a countable infinite set, for i = 1, ..., 700, is $\bigcup_i X_i$ countable infinite?
- If X_i is a countable infinite set, for $i = 1, ..., is \cup_i X_i$ countable infinite?
- \bigcirc Let X be a countable infinite set, and consider its power set

 $2^{\boldsymbol{X}} = \{ \boldsymbol{Y} \mid \boldsymbol{Y} \subseteq \boldsymbol{x} \} \,.$

The statement "the set $2^{\mathbf{X}}$ is countable" is correct?

THE END

(for now)

. . .